scholarly journals Torque-Sensorless Control of Stepper Motors for Low-Cost Compliant Motion Generation

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yan-Lin Huang ◽  
Chia-Hao Liang ◽  
Bo-Hao Chen ◽  
Chao-Chieh Lan
1991 ◽  
Vol 17 (1) ◽  
pp. 63-66 ◽  
Author(s):  
Faisal Fadul ◽  
K. Weidenboerner
Keyword(s):  
Low Cost ◽  

2021 ◽  
Author(s):  
Yara Almubarak ◽  
Michelle Schmutz ◽  
Miguel Perez ◽  
Shrey Shah ◽  
Yonas Tadesse

Abstract Underwater exploration or inspection requires suitable robotic systems capable of maneuvering, manipulating objects, and operating untethered in complex environmental conditions. Traditional robots have been used to perform many tasks underwater. However, they have limited degrees of freedom, manipulation capabilities, portability, and have disruptive interactions with aquatic life. Research in soft robotics seeks to incorporate ideas of the natural flexibility and agility of aquatic species into man-made technologies to improve the current capabilities of robots using biomimetics. In this paper, we present a novel design, fabrication, and testing results of an underwater robot known as Kraken that has tentacles to mimic the arm movement of an octopus. To control the arm motion, Kraken utilizes a hybrid actuation technology consisting of stepper motors and twisted and a coiled fishing line polymer muscle (TCP FL ). TCPs are becoming one of the promising actuation technologies due to their high actuation stroke, high force, light weight, and low cost. We have studied different arm stiffness configurations of the tentacles tailored to operate in different modalities (curling, twisting, and bending), to control the shape of the tentacles and grasp irregular objects delicately. Kraken uses an onboard battery, a wireless programmable joystick, a buoyancy system for depth control, all housed in a three-layer 3D printed dome-like structure. Here, we present Kraken fully functioning underwater in an Olympic-size swimming pool using its servo actuated tentacles and other test results on the TCP FL actuated tentacles in a laboratory setting. This is the first time that an embedded TCP FL actuator within elastomer has been proposed for the tentacles of an octopus-like robot along with the performance of the structures. Further, as a case study, we showed the functionality of the robot in grasping objects underwater for field robotics applications.


Author(s):  
Amro Shafik ◽  
Salah Haridy

Computer Numerical Control (CNC) is a technology that converts coded instructions and numerical data into sequential actions that describe the motion of machine axes or the behavior of an end effector. Nowadays, CNC technology has been introduced to different stages of production, such as rapid prototyping, machining and finishing processes, testing, packaging, and warehousing. The main objective of this chapter is to introduce a methodology for design and implementation of a simple and low-cost educational CNC prototype. The machine consists of three independent axes driven by stepper motors through an open-loop control system. Output pulses from the parallel port of Personal Computer (PC) are used to drive the stepper motors after processing by an interface card. A flexible, responsive, and real-time Visual C# program is developed to control the motion of the machine axes. The integrated design proposed in this chapter can provide engineers and students in academic institutions with a simple foundation to efficiently build a CNC machine based on the available resources. Moreover, the proposed prototype can be used for educational purposes, demonstrations, and future research.


2009 ◽  
Vol 10 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Abolfazl Halvaei Niasar ◽  
Abolfazl Vahedi ◽  
Hassan Moghbelli

2017 ◽  
Vol 11 (4) ◽  
Author(s):  
Colton McElheny ◽  
Daniel Hayes ◽  
Ram Devireddy

Three-dimensional (3D) bioprinting offers innovative research vectors for tissue engineering. However, commercially available bioprinting platforms can be cost prohibitive to small research facilities, especially in an academic setting. The goal is to design and fabricate a low-cost printing platform able to deliver cell-laden fluids with spatial accuracy along the X, Y, and Z axes of 0.1 mm. The bioprinter consists of three subassemblies: a base unit, a gantry, and a shuttle component. The platform utilizes four stepper motors to position along three axes and a fifth stepper motor actuating a pump. The shuttle and gantry are each driven along their respective horizontal axes via separate single stepper motor, while two coupled stepper motors are used to control location along the vertical axis. The current shuttle configuration allows for a 5 mL syringe to be extruded within a work envelope of 180 mm × 160 mm × 120 mm (X, Y, Z). The shuttle can easily be reconfigured to accommodate larger volume syringes. An attachment for a laser pen is located such that printing material may be light-activated pre-extrusion. Positional fidelity was established with calipers possessing a resolution to the nearest hundredth millimeter. The motors associated with the X and Y axes were calibrated to approximately 0.02 mm per motor impulse. The Z axis has a theoretical step distance of ∼51 nm, generating 0.04% error over a 10 mm travel distance. The A axis, or pump motor, has an impulse distance of 0.001 mm. The volume extruded by a single impulse is dictated by the diameter of the syringe used. With a 5 mL syringe possessing an inner diameter of 12.35 mm, the pump pushes as little as 0.119 μL. While the Z axis is tuned to the highest resolution settings for the motor driver, the X, Y, and A axes can obtain higher or lower resolution via physical switches on the motor drivers.


Sign in / Sign up

Export Citation Format

Share Document