scholarly journals Kraken: A wirelessly controlled octopus-like hybrid robot utilizing stepper motors and fishing line artificial muscle for grasping underwater

Author(s):  
Yara Almubarak ◽  
Michelle Schmutz ◽  
Miguel Perez ◽  
Shrey Shah ◽  
Yonas Tadesse

Abstract Underwater exploration or inspection requires suitable robotic systems capable of maneuvering, manipulating objects, and operating untethered in complex environmental conditions. Traditional robots have been used to perform many tasks underwater. However, they have limited degrees of freedom, manipulation capabilities, portability, and have disruptive interactions with aquatic life. Research in soft robotics seeks to incorporate ideas of the natural flexibility and agility of aquatic species into man-made technologies to improve the current capabilities of robots using biomimetics. In this paper, we present a novel design, fabrication, and testing results of an underwater robot known as Kraken that has tentacles to mimic the arm movement of an octopus. To control the arm motion, Kraken utilizes a hybrid actuation technology consisting of stepper motors and twisted and a coiled fishing line polymer muscle (TCP FL ). TCPs are becoming one of the promising actuation technologies due to their high actuation stroke, high force, light weight, and low cost. We have studied different arm stiffness configurations of the tentacles tailored to operate in different modalities (curling, twisting, and bending), to control the shape of the tentacles and grasp irregular objects delicately. Kraken uses an onboard battery, a wireless programmable joystick, a buoyancy system for depth control, all housed in a three-layer 3D printed dome-like structure. Here, we present Kraken fully functioning underwater in an Olympic-size swimming pool using its servo actuated tentacles and other test results on the TCP FL actuated tentacles in a laboratory setting. This is the first time that an embedded TCP FL actuator within elastomer has been proposed for the tentacles of an octopus-like robot along with the performance of the structures. Further, as a case study, we showed the functionality of the robot in grasping objects underwater for field robotics applications.

Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 21
Author(s):  
Bruno Lourenço ◽  
Vitorino Neto ◽  
Rafhael de Andrade

The Hands exert a vital role in the simplest to most complex daily tasks. Losing the ability to make hand movements, which is usually caused by spinal cord injury or stroke, dramatically impacts the quality of life. In order to counteract this problem, several assisting devices have been proposed, but they still present several usage limitations. The marketable orthoses are generally either the static type or over-expensive active orthosis that cannot perform the same degrees of freedom (DoF) that a hand can do. This paper presents a conceptual design of a tendon-driven mechanism for hand’s active orthosis. This study is a part of an effort to develop an effective and low-cost hand’s orthosis for people with hand paralysis. The tendon design proposed was thought to comply with some requisitions such as lightness and low volume, as well as fit with the biomechanical constraints of the hand joints to enable a comfortable use. The mechanism employs small cursors on the phalanges to allow the tendons to run on the dorsal side and by both sides of the fingers, allowing 2 DoF for each finger, and one extra tendon enlarges the hands’ adduction nuances. With this configuration, it is simple enough to execute the flexion and extension movements, which are the most used movements in daily actives, using one single DC actuator for one DoF to reduce manufacturing costs, or with more DC actuators to enable more natural hand coordination. This system of actuation is suitable to create soft exoskeletons for hands easily embedded into 3D printed parts, which could be merged over statics thermoplastic orthosis. The final orthosis design allows dexterous finger movements and force to grasp objects and perform tasks comfortably.


2020 ◽  
Vol 2 (1) ◽  
pp. 72
Author(s):  
Stefano Lumetti ◽  
Perla Malagò ◽  
Dietmar Spitzer ◽  
Sigmund Zaruba ◽  
Michael Ortner

Properties such as high resolution, contactless (and thus wear-free) measurement, low power consumption, robustness against temperature and contamination as well as low cost make magnetic position and orientation systems appealing for a large number of industrial applications. Nevertheless, one major practical challenge is their sensitivity to fabrication tolerances. In this work, we propose a novel method for magnetic position system calibration based on the analytical computation of the magnetic field and on the application of an evolutionary optimization algorithm. This scheme enables the calibration of more than 10 degrees of freedom within a few seconds on standard quad-core ×86 processors, and is demonstrated by calibrating a highly cost-efficient 3D-printed 3-axis magnetic joystick.


Author(s):  
Niko Giannakakos ◽  
Ayse Tekes ◽  
Tris Utschig

Abstract Mechanical engineering students often learn the fundamentals of vibrations along with the time response of underdamped, critically damped, and overdamped systems in machine dynamics and vibrations courses without any validation or visualization through hands-on experimental learning activities. As these courses are highly theoretical, students find it difficult to connect theory to practical fundamentals such as modeling of a mechanical system, finding components of the system using experimental data, designing a system to achieve a desired response, or designing a passive vibration isolator to reduce transmitted vibrations on a primary system. Further, available educational laboratory equipment demonstrating vibrations, dynamics and control is expensive, bulky, and not portable. To address these issues, we developed a low-cost, 3D printed, portable laboratory equipment (3D-PLE) system consisting of primary and secondary carts, rail, linear actuator, Arduino, and compliant flexures connecting the carts. Most of the educational systems consist of a mass limited to 1DOF motion and multi-degrees of freedom systems can be created using mechanical springs. However, in real-world applications oscillations in a system are not necessarily due to mechanical springs. Anything flexible, or thin and long, can be represented by a spring as seen in torsional systems. We incorporated 3D printed and two monolithically designed rigid arms connected with a flexure hinge of various stiffness. The carts are designed in a way such that two flexible links can be attached from both sides and allow more loads to be added on each cart. The system can be utilized to demonstrate fundamentals of vibrations and test designs of passive isolators to dampen the oscillations of the primary cart.


Author(s):  
Dilshad A. Sulaiman ◽  
Akash B. Pandey

This paper provides the design of a simple robotic arm for pick and place operations as well as other material handling operations. The movements of the arm are anthropometric i.e. resembling the human arm with respect to degrees of freedom so as to provide a human touch in industrial and space operations. This system operates using controlled motion of DC geared motors along with a microcontroller based system (8051 or PIC based). Use of PWM (Pulse Width Modulation) can be used to control the RPM of DC geared motors. This system has the advantage of being simple and low cost with a varied flexibility of operation. A collective array of sensors viz. voice sensor, infrared light sensors, proximity sensors etc. can be incorporated to form a feedback induced closed loop system. Whereas for tasks of picking and placing at a fixed location from another location the system can be operational at open-loop. The material for the robotic arm can be polypropylene or acrylic or aluminium to reduce weight without compromising on the strength and lifting capacity of the robotic arm, such that the torque of the DC geared motors (actuators) at each joint are sufficient to lift the arm along with the weight at the end effector. Clutch and gear shifting mechanism can be used to increase the degrees of freedom per actuator. The driving circuit mainly consists of the microcontroller and H-bridge drivers using an 8-bit port to control 4 DC geared motors per port simultaneously or one at a time using delay commands. DC geared motors are quite cheaper than stepper motors and RC Servos thus reducing the total cost of the system drastically. Plus being light weight, DC geared motors reduce the total weight of the system. This paper will also throw light on the programming aspects for the microcontroller (8051 or PIC based) along with the compatible flash programmers and HEX code generators. This project will further explain on the approach followed in the mechanical design of the robotic arm (motion, work volume etc.) as well as the possible future applications of the robotic arm. Also the design of the robotic arm on CAD tools like Solidworks will be discussed in brief along with the modeling and simulation of the various links of the arm as well as the whole assembly of the system. With increasing popularity of Automation, robotic arms are the present and future of all industrial operations. Finally the paper concludes on the further improvements in design and technology.


2019 ◽  
Vol 62 (2) ◽  
pp. 405-414 ◽  
Author(s):  
Cameron J. Hohimer ◽  
Heng Wang ◽  
Santosh Bhusal ◽  
John Miller ◽  
Changki Mo ◽  
...  

Abstract. Fresh market apple harvesting is a difficult task that relies entirely on manual labor. Much research has been done on the development of mechanical harvesting techniques. Several selective harvesting robots have been developed for research studies, but there are no commercially available robotic systems. This article discusses the design and development of a novel pneumatic 3D-printed soft-robotic end-effector to facilitate apple separation. The end-effector was integrated into a robotic system with five degrees of freedom that was designed to simplify the picking sequence and reduce costs compared to previous versions. Apples were successfully harvested using the low-cost robotic system in a commercial orchard during the fall 2017 harvest. A detachment success rate on attempted apples of 67% was achieved, with an average time of 7.3 s per fruit from separation to storage bin. By conducting this study in an orchard where problematic apples were not removed to increase the detachment success rate, current pruning and thinning practices were assessed to help lay the foundation for future studies and develop strategies for successfully harvesting apples that are difficult to detach. Keywords: Apple catching, Apples, Automated harvesting, Field experimentation, Harvesting robot, Soft-robotic gripper.


2019 ◽  
Author(s):  
Alperen Guver ◽  
Nafetalai Fifita ◽  
Peker Milas ◽  
Michael Straker ◽  
Michael Guy ◽  
...  

AbstractA low-cost Scanning Electrochemical Microscope (SECM) was built with a 0.6 pA current measurement capability potentiostat and submicron resolution motorized stage, using open source software and hardware tools. The high performance potentiostat with a Python graphical user interface was built based on an open source project. Arduino boards, stepper motors, a manual XY micromanipulator stage, 3D printed couplers and gears were used in building the motorized stage. An open source motor control software was used for moving the motorized stage with high precision. An inverted microscope was utilized for viewing a standard microelectrode while scanning. The setup was tested in the formation of a map of electrochemical signals from an array of pores on a parafilm membrane. As the setup will be used in future biosensing experiments, DNA hybridization detection experiments were also performed with the setup.


Author(s):  
Ayse Tekes ◽  
Mohammed Mayeed ◽  
Kevin McFall

Abstract This study presents the design and development of a novel, low-cost load-deflection test setup providing the testing of flexible links and compliant mechanisms. Test bench consists of two stepper motors, lead screw, rail system, two carts, two clamps, bearings and a force sensor. Clamps are designed in a way to attach various types of compliant members such as pinned-pinned buckling beam, fixed-fixed beam and 3D printed links. Mechanism enables to calculate the stiffness of compliant and 3D printed flexible systems. Sliders are displaced quasi-statically to slowly stretch or compress the flexible members attached in between two clamps. Displacement of the carts and deflection of the midpoint of the buckling beams are captured using machine vision measurement. Force applied from one of the carts to the end of the attached link is recorded using the force sensor. Stiffness of 3D printed flexible translational vibratory mechanisms is obtained using the displacement of the carts and load deflection curve of buckling beams are obtained using deflection curve and load data. Experimental results are compared with the same simulations performed by FEA analysis.


Author(s):  
Alfiero Leoni ◽  
Vincenzo Stornelli ◽  
Giuseppe Ferri ◽  
Giancarlo Orengo ◽  
Vito Errico ◽  
...  

We here present a 10-17 Degrees of Freedom (DoF) sensory gloves for Smart Healthcare implementing an energy harvesting architecture, aimed at enhancing the battery lasting when powering the electronics of the two different types of gloves, used to sense fingers movements. In particular, we realized a comparison in terms of measurement repeatability and reliability, as well as power consumption and battery lasting, between two sensory gloves implemented by means of different technologies. The first is a 3D printed glove with 10 DoF, featuring low-cost, low-effort fabrication and low-power consumption. The second is a classical Lycra® glove with 14 DoF suitable for a more detailed assessment of the hand postures, featuring a relatively higher cost and power consumption. An electronic circuitry was designed to gather and elaborate data from both types of sensory gloves, differing for number of inputs only.  Both gloves are equipped with flex sensors and in addiction with the electronics (including a microcontroller and a transmitter) allow the control of hand virtual limbs or mechanical arts in surgical, military, space and civil applications.Six healthy subjects were involved in tests suitable to evaluate the performances of the proposed gloves in terms of repeatability, reproducibility and reliability. Particular effort was devoted to increase battery lasting for both glove-based systems, with the electronics relaying on Radio Frequency, Piezoelectric and Thermoelectric harvesters. The harvesting part was built and tested as a prototype discrete element board, that is interfaced with an external microcontroller and a radiofrequency transmitter board. Measurement results demonstrated a meaningful improvement in battery operation time up to 25%, considering different operating scenarios.


Author(s):  
Dilshad A. Sulaiman ◽  
Akash B. Pandey

This paper provides the design of a simple robotic arm for pick and place operations as well as other material handling operations. The movements of the arm are anthropometric i.e. resembling the human arm with respect to degrees of freedom so as to provide a human touch in industrial and space operations. This system operates using controlled motion of DC geared motors along with a microcontroller based system (8051 or PIC based). Use of PWM (Pulse Width Modulation) can be used to control the RPM of DC geared motors. This system has the advantage of being simple and low cost with a varied flexibility of operation. A collective array of sensors viz. voice sensor, infrared light sensors, proximity sensors etc. can be incorporated to form a feedback induced closed loop system. Whereas for tasks of picking and placing at a fixed location from another location the system can be operational at open-loop. The material for the robotic arm can be polypropylene or acrylic or aluminium to reduce weight without compromising on the strength and lifting capacity of the robotic arm, such that the torque of the DC geared motors (actuators) at each joint are sufficient to lift the arm along with the weight at the end effector. Clutch and gear shifting mechanism can be used to increase the degrees of freedom per actuator. The driving circuit mainly consists of the microcontroller and H-bridge drivers using an 8-bit port to control 4 DC geared motors per port simultaneously or one at a time using delay commands. DC geared motors are quite cheaper than stepper motors and RC Servos thus reducing the total cost of the system drastically. Plus being light weight, DC geared motors reduce the total weight of the system. This paper will also throw light on the programming aspects for the microcontroller (8051 or PIC based) along with the compatible flash programmers and HEX code generators. This project will further explain on the approach followed in the mechanical design of the robotic arm (motion, work volume etc.) as well as the possible future applications of the robotic arm. Also the design of the robotic arm on CAD tools like Solidworks will be discussed in brief along with the modeling and simulation of the various links of the arm as well as the whole assembly of the system. With increasing popularity of Automation, robotic arms are the present and future of all industrial operations. Finally the paper concludes on the further improvements in design and technology.


Sign in / Sign up

Export Citation Format

Share Document