scholarly journals Similarity Analysis between a Nonmodel-Based Disturbance Observer and a Time-Delayed Controller for Robot Manipulators in Cartesian Space

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Seul Jung ◽  
Joon Woo Lee
Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Rong Mei ◽  
ChengJiang Yu

This paper presents an adaptive neural output feedback control scheme for uncertain robot manipulators with input saturation using the radial basis function neural network (RBFNN) and disturbance observer. First, the RBFNN is used to approximate the system uncertainty, and the unknown approximation error of the RBFNN and the time-varying unknown external disturbance of robot manipulators are integrated as a compounded disturbance. Then, the state observer and the disturbance observer are proposed to estimate the unmeasured system state and the unknown compounded disturbance based on RBFNN. At the same time, the adaptation technique is employed to tackle the control input saturation problem. Utilizing the estimate outputs of the RBFNN, the state observer, and the disturbance observer, the adaptive neural output feedback control scheme is developed for robot manipulators using the backstepping technique. The convergence of all closed-loop signals is rigorously proved via Lyapunov analysis and the asymptotically convergent tracking error is obtained under the integrated effect of the system uncertainty, the unmeasured system state, the unknown external disturbance, and the input saturation. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed adaptive neural output feedback control scheme for uncertain robot manipulators.


1996 ◽  
Vol 8 (3) ◽  
pp. 243-251
Author(s):  
Satoshi Komada ◽  
◽  
Muneaki Ishida ◽  
Kouhei Ohnishi ◽  
Takamasa Hori ◽  
...  

This paper proposes a new robust hybrid position/force control of robot manipulators. The proposed method controls the second derivatives of control variables, such as position and force in a task coordinate system, in order to realize robust and high response control. To this end, the disturbances are estimated by a position-based disturbance observer and a force-based distrubance observer in the task coordinate system, and are compensated by feeding back the estimated distrubances. The proposed method requires less computational effort and is robust against the disturbance and parameter variations. The position-based distrubance observer has been proposed to linearize robot manipulators and has realized robust position control. However, when force control is performed, the force response is influenced by not only the nonlinearity of robot manipulators but also the charactersitics of the environment on which the force is imposed. Therefore, the force-based disturbance observer is developed to realize robust force control. A controller robust against the disturbance and parameter variations is realized by using the position-based disturbance observer and the force-based disturbance observer on performing the position control and the force control respectively. The effectiveness of the proposed method is shown by experiments by using a direct drive robot.


Sign in / Sign up

Export Citation Format

Share Document