scholarly journals Low Latency YOLO v3-Tiny Accelerator for Low-Cost FPGA using General Matrix Multiplication Principle

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Trio Adiono ◽  
Adiwena Putra ◽  
Nana Sutisna ◽  
Infall Syafalni ◽  
Rahmat Mulyawan
2018 ◽  
Vol 53 (1) ◽  
pp. 407-408
Author(s):  
Junhong Liu ◽  
Xin He ◽  
Weifeng Liu ◽  
Guangming Tan

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1984
Author(s):  
Wei Zhang ◽  
Zihao Jiang ◽  
Zhiguang Chen ◽  
Nong Xiao ◽  
Yang Ou

Double-precision general matrix multiplication (DGEMM) is an essential kernel for measuring the potential performance of an HPC platform. ARMv8-based system-on-chips (SoCs) have become the candidates for the next-generation HPC systems with their highly competitive performance and energy efficiency. Therefore, it is meaningful to design high-performance DGEMM for ARMv8-based SoCs. However, as ARMv8-based SoCs integrate increasing cores, modern CPU uses non-uniform memory access (NUMA). NUMA restricts the performance and scalability of DGEMM when many threads access remote NUMA domains. This poses a challenge to develop high-performance DGEMM on multi-NUMA architecture. We present a NUMA-aware method to reduce the number of cross-die and cross-chip memory access events. The critical enabler for NUMA-aware DGEMM is to leverage two levels of parallelism between and within nodes in a purely threaded implementation, which allows the task independence and data localization of NUMA nodes. We have implemented NUMA-aware DGEMM in the OpenBLAS and evaluated it on a dual-socket server with 48-core processors based on the Kunpeng920 architecture. The results show that NUMA-aware DGEMM has effectively reduced the number of cross-die and cross-chip memory access, resulting in enhancing the scalability of DGEMM significantly and increasing the performance of DGEMM by 17.1% on average, with the most remarkable improvement being 21.9%.


Author(s):  
Valery Tikhvinskiy ◽  
Grigory Bochechka ◽  
Andrey Gryazev ◽  
Altay Aitmagambetov

Optimization of 3GPP standards that apply to cellular technologies and their adaptation to LPWAN has not led to positive results only enabling to compete on the market with the growing number non-cellular greenfield LPWAN technologies – LoRa, Sigfox and others. The need to take into consideration, during the 3GPP standard optimization phase, the low-cost segment of narrow-band IoT devices relying on such new technologies as LTE-M, NB-IoT and EC-GSM, has also led to a loss of a number of technical characteristics and functions that offered low latency and guaranteed the quality of service. The aim of this article is therefore to review some of the most technical limitations and restrictions of the new 3GPP IoT technologies, as well as to indicate the direction for development of future standards applicable to cellular IoT technologies.


Author(s):  
Donghyuk Lee ◽  
Yoongu Kim ◽  
V. Seshadri ◽  
Jamie Liu ◽  
L. Subramanian ◽  
...  
Keyword(s):  
Low Cost ◽  

2017 ◽  
Vol 7 (6) ◽  
pp. 178-181
Author(s):  
Ali Aghdaei ◽  
Seyed A. (Reza) Zekavat
Keyword(s):  
Low Cost ◽  

Sign in / Sign up

Export Citation Format

Share Document