scholarly journals Comparative Analysis of QoS Management and Technical Requirements in 3GPP Standards for Cellular IoT Technologies

Author(s):  
Valery Tikhvinskiy ◽  
Grigory Bochechka ◽  
Andrey Gryazev ◽  
Altay Aitmagambetov

Optimization of 3GPP standards that apply to cellular technologies and their adaptation to LPWAN has not led to positive results only enabling to compete on the market with the growing number non-cellular greenfield LPWAN technologies – LoRa, Sigfox and others. The need to take into consideration, during the 3GPP standard optimization phase, the low-cost segment of narrow-band IoT devices relying on such new technologies as LTE-M, NB-IoT and EC-GSM, has also led to a loss of a number of technical characteristics and functions that offered low latency and guaranteed the quality of service. The aim of this article is therefore to review some of the most technical limitations and restrictions of the new 3GPP IoT technologies, as well as to indicate the direction for development of future standards applicable to cellular IoT technologies.

Author(s):  
Adriana Cunha ◽  
João Silva

Industrial demand has changed and present increasingly demanding requirements. Companies need to evolve and innovate to be able to go along and fulfill its customers requirements. Currently, major players have the capacity, resources and money, to install the most innovate and expensive machines, tools and devices on its shop-floor. SMEs on its side, face several challenges to manage its limited resources. SME aims to maximize the usage of the available resources to continue its activity and if possible to grow. The usage of low-cost IoT devices allow companies to monitor the usage of its resources and the quality of its products without the need to made a huge investment that wouldn’t be affordable for them. The results presented were a result of the C2NET Project that was designed to comprehensively cover the entire supply chain considering all stages of manufacturing, distribution and sales to supply a product to market. The results achieved were able to fulfill specific needs of the industrial partners of the project, and were validated by 6 companies from Automative, DermoCosmetics, Metalworking and OEM (Original Equipment Manufacturer) Industries from Spain, France, Portugal and Finland.[1] A Metalworking SME was used as an use case due to its complexity and diversity, although most of the achievements can be replicated in other industries, even the more traditional ones.


Author(s):  
Nadezhda S. Nikulina ◽  
Victor N. Verezhnikov ◽  
Sergey S. Nikulin ◽  
Marya A. Provotorova ◽  
Inna N. Pugacheva

At present, much attention is paid to improving the production of synthetic rubbers. The introduction of new technologies to increase the productivity of the process, more fully and rationally use valuable hydrocarbon raw materials, reduce environmental pollution and improve the quality of the products is an important and urgent task. Equally important in this case is the selection of new coagulating agents used in the technology of rubber release from latex. The main requirements for coagulating agents used in the technology of rubber release from latex are: availability, low cost, non-toxicity, ease of cleaning of sewage coming to treatment facilities from them. The possibility of application of the beet-sugar production waste - molasses for beet-lean depletion - in the technology of producing butadiene-styrene rubber SKS-30 ARC has been studied. A feature of the behavior of molasses, as a coagulating agent, is shown when isolating rubber from latex. It has been established that the consumption of molasses in the isolation of butadiene-styrene rubber from latex is closely related to the consumption of acidifying agent - sulfuric acid. The higher the molasses input for coagulation, the higher the consumption of sulfuric acid to maintain the pH of the medium at the required level. The temperature of the process did not have a significant effect on the completeness of the release of rubber from latex. The extracted crumb of rubber was separated from the aqueous phase (sulfur), washed with warm softened water and dried. On the basis of the rubber obtained, rubber mixtures were prepared using standard components and vulcanized. Rubbers obtained on the basis of rubber SKS-30 ARC, in their indicators meet the requirements.


2021 ◽  
Vol 1 (1) ◽  
pp. 7-13
Author(s):  
А. V. Bulashenko

Context. 5G network is able to improve existing services and provide a new quality of services. 5G communication networks combine various radio technologies and technologies of fixed communication networks, therefore they are often called heterogeneous, which emphasizes their difference from other networks. One of the main features of such networks is over-density and ultra-low latency. It is the Internet of things that is the basic component of the concept of super dense networks. 3GPP suggests planning 5G networks based on the condition that 1 million devices is 1 km2. Also, ultra-low latency communications networks have a big impact on networking methods, especially for the tactile Internet concept. Such networks require decentralization through 1 ms delay requirements. This requires new approaches to building a new generation of networks, which is the reason for the development of new technologies. One such technology is D2D (device-to-device) technology. This technology allows you to reduce the load on the core of the network due to the use of a significant proportion of the traffic directly between devices and reduces the delay in providing services. Objective. The goal of the work is to create an optimal combined criterion for choosing effective traffic routes in a wireless network based on D2D technology. Method. Many modern works are devoted to the study of D2D technology, but they are not exhaustive in the study of routing in such networks. It is objective enough to study networks built on the basis of the interaction of devices with each other using D2D technology, since such interactions have proven to be effective technologies. This, in turn, involves the development of appropriate routing methods in networks using D2D technology, especially taking into account the property of over-density 5G networks. The paper proposes a criterion for selecting routes, taking into account interference within the channels forming the network nodes. This criterion combines the choice of routes according to the length criteria and the criterion of maximum throughput. Results. A developed combined criterion for selecting traffic routing in a wireless network that uses D2D technology. The results of the study are shown in graphic data. Conclusions. The experiments confirmed the efficiency and effectiveness of the developed method and allow us to recommend this method for practical use as a result of route selection, taking into account those network properties that are more likely to affect the quality of the route.


2018 ◽  
Vol 12 (3) ◽  
pp. 188-195 ◽  
Author(s):  
Davor Petrović ◽  
Željko Barač

The paper presents a review of different sensory systems for trees’ characterization and detection in permanent crops and the detection of plant health status in crop conditions for the purpose of applying the variable application rate. The use of new technologies enables the use of variable inputs in production with the aim of increasing the economic profit and reducing the negative impact on the environment. World trends increasingly emphasize the use of various sensor systems to achieve precision agriculture and apply the following: ultrasonic sensors for the detection of permanent crops; LIDAR (optical) sensors for treetop detection and characterization; infrared sensors with similar characteristics of optical sensors, but with very low cost prices and N - sensors for variable nitric fertilization. The daily development of sensor systems applied in agricultural production improves the performance and quality of the machines they are installed on. With a more intensive use of sensors in agricultural mechanization, their price becomes more acceptable for widespread use by achieving high quality work with respect to the ecological principles of sustainable production.


2021 ◽  
Author(s):  
Sudad H Al-Obaidi ◽  
Smirnov VI ◽  
Khalaf FH

The article deals with theoretical and practical issues of improving the efficiency of operation of high-water cut oil wells by developing and applying double-acting pumping systems based on electric submersible pumps. This combination is providing down-hole gravitational separation of oil and produced water, lifting low-water-cut oil to the surface with simultaneous injection of most of the separated water into the absorbing formation without lifting to the surface. Moreover, it is providing low-cost regulation of the ratio of the volumes of the lifted product and the injected water, as well as monitoring the quality of the injected water with the required frequency.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1185 ◽  
Author(s):  
Daniele Strigaro ◽  
Massimiliano Cannata ◽  
Milan Antonovic

In low-income and developing countries, inadequate weather monitoring systems adversely affect the capacity of managing natural resources and related risks. Low-cost and IoT devices combined with a large diffusion of mobile connection and open technologies offer a possible solution to this problem. This research quantitatively evaluates the data quality of a non-conventional, low-cost and fully open system. The proposed novel solution was tested for a duration of 8 months, and the collected observations were compared with a nearby authoritative weather station. The experimental weather station is based in Arduino and transmits data through the 2G General Packet Radio Service (GPRS) to the istSOS which is a software to set-up a web service to collect, share and manage observations from sensor networks using the Sensor Observation Service (SOS) standard of the Open Geospatial Consortium (OGC). The results demonstrated that this accessible solution produces data of appropriate quality for natural resource and risk management.


Author(s):  
A. Fryskowska ◽  
M. Kedzierski ◽  
A. Grochala ◽  
A. Braula

Non-metric digital cameras are being widely used for photogrammetric studies. The increase in resolution and quality of images obtained by non-metric cameras, allows to use it in low-cost UAV and terrestrial photogrammetry. Imagery acquired with non-metric cameras can be used in 3D modeling of objects or landscapes, reconstructing of historical sites, generating digital elevation models (DTM), orthophotos, or in the assessment of accidents. <br><br> Non-metric digital camcorders are characterized by instability and ignorance of the interior orientation parameters. Therefore, the use of these devices requires prior calibration. Calibration research was conducted using non-metric camera, different calibration tests and various software. <br><br> The first part of the paper contains a brief theoretical introduction including the basic definitions, like the construction of non-metric cameras or description of different optical distortions. The second part of the paper contains cameras calibration process, details of the calibration methods and models that have been used. Sony Nex 5 camera calibration has been done using software: Image Master Calib, Matlab - Camera Calibrator application and Agisoft Lens. For the study 2D test fields has been used. As a part of the research a comparative analysis of the results have been done.


Author(s):  
A. Fryskowska ◽  
M. Kedzierski ◽  
A. Grochala ◽  
A. Braula

Non-metric digital cameras are being widely used for photogrammetric studies. The increase in resolution and quality of images obtained by non-metric cameras, allows to use it in low-cost UAV and terrestrial photogrammetry. Imagery acquired with non-metric cameras can be used in 3D modeling of objects or landscapes, reconstructing of historical sites, generating digital elevation models (DTM), orthophotos, or in the assessment of accidents. &lt;br&gt;&lt;br&gt; Non-metric digital camcorders are characterized by instability and ignorance of the interior orientation parameters. Therefore, the use of these devices requires prior calibration. Calibration research was conducted using non-metric camera, different calibration tests and various software. &lt;br&gt;&lt;br&gt; The first part of the paper contains a brief theoretical introduction including the basic definitions, like the construction of non-metric cameras or description of different optical distortions. The second part of the paper contains cameras calibration process, details of the calibration methods and models that have been used. Sony Nex 5 camera calibration has been done using software: Image Master Calib, Matlab - Camera Calibrator application and Agisoft Lens. For the study 2D test fields has been used. As a part of the research a comparative analysis of the results have been done.


2013 ◽  
Vol 20 (3) ◽  
pp. 91-106 ◽  
Author(s):  
Rachel Pizarek ◽  
Valeriy Shafiro ◽  
Patricia McCarthy

Computerized auditory training (CAT) is a convenient, low-cost approach to improving communication of individuals with hearing loss or other communicative disorders. A number of CAT programs are being marketed to patients and audiologists. The present literature review is an examination of evidence for the effectiveness of CAT in improving speech perception in adults with hearing impairments. Six current CAT programs, used in 9 published studies, were reviewed. In all 9 studies, some benefit of CAT for speech perception was demonstrated. Although these results are encouraging, the overall quality of available evidence remains low, and many programs currently on the market have not yet been evaluated. Thus, caution is needed when selecting CAT programs for specific patients. It is hoped that future researchers will (a) examine a greater number of CAT programs using more rigorous experimental designs, (b) determine which program features and training regimens are most effective, and (c) indicate which patients may benefit from CAT the most.


Sign in / Sign up

Export Citation Format

Share Document