scholarly journals Experimental study on the influence of flexible control on key parameters in reverse osmosis desalination

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Shuai Chu ◽  
Shitan Zhang ◽  
Xiaona Ma ◽  
Yinxuan Li ◽  
Denggao Qiu ◽  
...  
1989 ◽  
Vol 21 (2) ◽  
pp. 189-193 ◽  
Author(s):  
B. Rigden

The design of a reverse osmosis desalination unit and a rotating biological contactor for water and wastewater treatment for a small island resort is described. Some operational data are presented and recommendations for design flows and loadings are made.


Desalination ◽  
2021 ◽  
Vol 507 ◽  
pp. 115033
Author(s):  
Daiwang Song ◽  
Yin Zhang ◽  
Haitao Wang ◽  
Lidong Jiang ◽  
Chengpeng Wang ◽  
...  

Desalination ◽  
2021 ◽  
Vol 503 ◽  
pp. 114937
Author(s):  
Marcello Di Martino ◽  
Styliani Avraamidou ◽  
Julie Cook ◽  
Efstratios N. Pistikopoulos

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2772
Author(s):  
Vishwas Powar ◽  
Rajendra Singh

Plummeting reserves and increasing demand of freshwater resources have culminated into a global water crisis. Desalination is a potential solution to mitigate the freshwater shortage. However, the process of desalination is expensive and energy-intensive. Due to the water-energy-climate nexus, there is an urgent need to provide sustainable low-cost electrical power for desalination that has the lowest impact on climate and related ecosystem challenges. For a large-scale reverse osmosis desalination plant, we have proposed the design and analysis of a photovoltaics and battery-based stand-alone direct current power network. The design methodology focusses on appropriate sizing, optimum tilt and temperature compensation techniques based on 10 years of irradiation data for the Carlsbad Desalination Plant in California, USA. A decision-tree approach is employed for ensuring hourly load-generation balance. The power flow analysis evaluates self-sufficient generation even during cloud cover contingencies. The primary goal of the proposed system is to maximize the utilization of generated photovoltaic power and battery energy storage with minimal conversions and transmission losses. The direct current based topology includes high-voltage transmission, on-the-spot local inversion, situational awareness and cyber security features. Lastly, economic feasibility of the proposed system is carried out for a plant lifetime of 30 years. The variable effect of utility-scale battery storage costs for 16–18 h of operation is studied. Our results show that the proposed design will provide low electricity costs ranging from 3.79 to 6.43 ¢/kWh depending on the debt rate. Without employing the concept of baseload electric power, photovoltaics and battery-based direct current power networks for large-scale desalination plants can achieve tremendous energy savings and cost reduction with negligible carbon footprint, thereby providing affordable water for all.


Sign in / Sign up

Export Citation Format

Share Document