scholarly journals A Total-Cross-Tied Based Dynamic Photovoltaic Array Reconfiguration for Water Pumping System

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
G Harish Kumar Varma ◽  
Venugopal Reddy Barry ◽  
Rohit Kumar Jain
2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Arunendra K. Tiwari ◽  
Vimal C. Sontake ◽  
Vilas R. Kalamkar

Abstract Lower operating temperatures of the photovoltaic (PV) cells increase the performance and efficiency of any PV installation. The efficiency of solar photovoltaic water pumping system (SPVWPS) decreases considerably with the increase in the PV cell temperature. In this paper, the performance of a 2 hp SPVWPS has been investigated experimentally, for the influence of panel cooling, using water. The experimental observations have been made under climatic conditions of Visvesvaraya National Institute of Technology, Nagpur campus, India, during the year 2018. The performance was evaluated under four different cases: (a) without panel cooling, (b) with water cooling on the top of the panel surface, (c) with water cooling on beneath the surface of the panel, and (d) with water cooling beneath the surface of the panel using jute. The effect of different cooling cases on the various performance parameters such as discharge, power output, pump efficiency, and system efficiency has been analyzed and discussed. The results showed that the water cooling on the top of the panel and beneath the surface of the panel with jute has considerable influence on performance enhancement when compared with other cases.


Author(s):  
Atarsia Loubna ◽  
Toufouti Riad ◽  
Meziane Salima

Due to the absence of energy transmission lines connected to the water pumping sites in remote areas, problems related to the electrical power outages and the environmental degradation caused by fossil fuel. For this one of the most conceived solutions is the photovoltaic water pumping technology which has the advantage of being sustainable and respectful of the environment to supply water to rural areas. To ensure the need of water, especially for domestic use and small communities, in this article, the photovoltaic energy system for autonomous water pumping using the induction motor was presented, particularly adapted to the isolated regions. Pumping system consists of four photovoltaic (PV) panels, boost converter, inverter, induction motor, centrifugal pump and a storage tank. In this study, the output power of a PV solar cell is fully used by proposing the P&O algorithm, where it is used to follow a maximum power point tracking (MPPT) technique. The recommended system is designed, modeled and simulated on the MATLAB/Simulink platform. The efficiency of the proposed algorithm is observed with variable solar sunshine.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2915-2927 ◽  
Author(s):  
Vimal Sontake ◽  
Arunendra Tiwari ◽  
Vilas Kalamkar

Photovoltaic technology is an effective, reliable and rapidly developing technology to convert solar energy into electrical energy. In the recent years, the need and demand of solar photovoltaic water pumping system has been increased as a stand-alone water pumping system to pump water in remote, desolate and mountainous region for end use of livestock watering and rural/urban water supply system. For a required pumping head, photovoltaic array configuration and its size (peak power rating, Wp) affect the flow rate of pumped water, economy and performance of solar photovoltaic water pumping system. The recent work is aimed to study performance of a directly coupled solar photovoltaic water pumping system at different pumping heads (2 bar, 3 bar, 4 bar, and 5 bar) and different photovoltaic array configurations (3S?2P, 4S?2P, 5S?2P, 6S, 7S, and 8S) for the real meteorological conditions of the Vidarbha region, central India (Nagpur). A comparative study has been done to investigate the head effect on the optimum photovoltaic array configuration, pump and pumping system total efficiency by performing experiment on the centrifugal deep well pump (SQF 5A-7), with 6-10 photovoltaic modules (200 W each) with various configurations and different heads. It is concluded that the 4S?2P and 5S?2P configurations are most optimized array to provide optimum energy at all pumping heads.


Sign in / Sign up

Export Citation Format

Share Document