scholarly journals Conditional GANs for Dynamic Control-Parameter Selection in Power Systems

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Gurupraanesh Raman ◽  
Colm J. O'Rourke ◽  
Jerry Lu ◽  
Jimmy Chih-Hsien Peng ◽  
James L. Kirtley
Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 705 ◽  
Author(s):  
Sergio Pérez-López ◽  
José Miguel Fuster ◽  
Pilar Candelas ◽  
Daniel Tarrazó-Serrano ◽  
Sergio Castiñeira-Ibáñez ◽  
...  

In this work, we present a bifocal Fresnel zone plate (BiFZP) capable of generating focusing profiles with two different foci. The performance of the BiFZP is demonstrated in the ultrasound domain, with a very good agreement between the experimental measurements and the finite element method (FEM) simulations. This lens becomes an appealing alternative to other dual-focusing lenses, in which the foci location can only be set at a limited range of positions, such as M-bonacci zone plates. Moreover, the variation of the operating frequency has also been analyzed, providing an additional dynamic control parameter in this type of lenses.


2013 ◽  
Vol 479-480 ◽  
pp. 570-574
Author(s):  
Cong Hui Huang ◽  
Chih Ming Hong ◽  
Yih Feng Su ◽  
Song Mao Lee ◽  
Chuan Sing Jhuang ◽  
...  

This paper presents Elman neural network for the dynamic control strategies of a hybrid power system that include wind/photovoltaic/diesel system. Wind and PV power are the primary power sources of the system to take full advantages of renewable energy, and the diesel-engine is used as a backup system. A simulation model for the hybrid energy system has been developed using MATLAB/Simulink. To achieve a fast and stable response for the real power control, the intelligent controller consists of a Radial Basis Function Network (RBFN) and an modified Elman Neural Network (ENN) for maximum power point tracking (MPPT). The pitch angle of wind turbine is controlled by ENN, and the PV system uses RBFN, where the output signal is used to control the DC / DC boost converters to achieve the MPPT.


Author(s):  
Hanuman P. Agrawal ◽  
Hariom Bansal

Background: The power industry has been evolving continuously and influenced by a competitive deregulated market. The crucial demand to maximize the efficiency of the existing equipment requires it’s proper management. Flexible AC Transmission System (FACTS) are flexible devices, which provide dynamic control over the power system to cope with its dynamic nature. Methods: An extensive review is carried out on FACT devices covering its classification, importance, optimal placement and influence on the power systems. Results: In this paper, different techniques to identify the optimal location of placing FACT devices have been discussed and compared, as the placement of these devices in the power system is of utmost importance for its efficiency. Conclusion: This paper summarizes techniques available for optimal placement of FACTS devices in order to improve power system performance. It will serve as a ready reference for the future researchers in this field and help them in selecting the proper devices to carry out their work.


Author(s):  
Nikolay Mikhalchuk

Objective: To develop and justify energy-efficient and energy-saving control technology of traction electric drive with maximum realization of traction properties. Methods: Mathematical modeling, experimental manufacturing of prototypes of the converters and control system. Results: Theoretical justification was presented, based on refinement of the theory of energy processes in electrical circuits with solid state power controllers. It was proposed to apply electrical resistance of elements in electric power systems as a power control parameter instead of the conventional voltage. It was revealed that, in contrast to the existing analogues, semiconductor power regulators of different application with a new control parameter acquire the property of the electric variator. Technical solutions for manufacturing an innovative traction electric rolling stock were introduced with the use of advanced technical solutions of power control with adaptive control system that provides improved traction properties without shortening irreversible transformation of electric energy of power semiconductor devices. As an example, the solutions involving artificial intelligence in control systems of complex technical systems were presented, based on graphics processors, neural networks, providing parallel processing of large information arrays. Practical importance: Introduction of electric solid state variable speed with adaptive, intelligent control systems will significantly raise energy efficiency and improve the implementation of traction parameters of the locomotive.


Sign in / Sign up

Export Citation Format

Share Document