Parallel Computing optimization of Two- Dimensional Mathematical Modeling of Contaminant Migration in Catalytic Porous Media

Author(s):  
Anatoliy Vlasyuk ◽  
Viktor Zhukovskyy ◽  
Nataliia Zhukovska ◽  
Serhii Shatnyi
Author(s):  
Anatolyy Vlasyuk ◽  
Viktor Zhukovskyy ◽  
Nataliia Zhukovska ◽  
Serhiy Kraychuk

This paper proposes an approach for the computer simulation of complex physical problem of contaminant migration through unsaturated catalytic porous media to the filter-trap. The corresponding mathematical model in the two-dimensional nonlinear case is presented. The model includes detailed considerations of the moisture transfer of saline solutions under the generalized Darcy’s and Cluta’s laws in different subregions of soil. The numerical solution of the boundary value problem was found by the finite difference method and proposed the algorithm for computer implementation. The proposed algorithm may be used for creating software with effective risk assessment strategies and predicting the cleaning and further useful use of the soil massifs.


1999 ◽  
Vol 2 (3) ◽  
pp. 251-262
Author(s):  
P. Gestoso ◽  
A. J. Muller ◽  
A. E. Saez

1977 ◽  
Vol 12 (1) ◽  
pp. 233-255
Author(s):  
J.F. Sykes ◽  
A.J. Crutcher

Abstract A two-dimensional Galerkin finite element model for flow and contaminant transport in variably saturated porous media is used to analyze the transport of chlorides from a sanitary landfill located in Southern Ontario. A representative cross-section is selected for the analysis. Predicted chloride concentrations are presented for the cross section at various horizon years.


2021 ◽  
Vol 11 (8) ◽  
pp. 3421
Author(s):  
Cheng-Yu Ku ◽  
Li-Dan Hong ◽  
Chih-Yu Liu ◽  
Jing-En Xiao ◽  
Wei-Po Huang

In this study, we developed a novel boundary-type meshless approach for dealing with two-dimensional transient flows in heterogeneous layered porous media. The novelty of the proposed method is that we derived the Trefftz space–time basis function for the two-dimensional diffusion equation in layered porous media in the space–time domain. The continuity conditions at the interface of the subdomains were satisfied in terms of the domain decomposition method. Numerical solutions were approximated based on the superposition principle utilizing the space–time basis functions of the governing equation. Using the space–time collocation scheme, the numerical solutions of the problem were solved with boundary and initial data assigned on the space–time boundaries, which combined spatial and temporal discretizations in the space–time manifold. Accordingly, the transient flows through the heterogeneous layered porous media in the space–time domain could be solved without using a time-marching scheme. Numerical examples and a convergence analysis were carried out to validate the accuracy and the stability of the method. The results illustrate that an excellent agreement with the analytical solution was obtained. Additionally, the proposed method was relatively simple because we only needed to deal with the boundary data, even for the problems in the heterogeneous layered porous media. Finally, when compared with the conventional time-marching scheme, highly accurate solutions were obtained and the error accumulation from the time-marching scheme was avoided.


2020 ◽  
Vol 12 (8) ◽  
pp. 168781402093046 ◽  
Author(s):  
Noor Saeed Khan ◽  
Qayyum Shah ◽  
Arif Sohail

Entropy generation in bioconvection two-dimensional steady incompressible non-Newtonian Oldroyd-B nanofluid with Cattaneo–Christov heat and mass flux theory is investigated. The Darcy–Forchheimer law is used to study heat and mass transfer flow and microorganisms motion in porous media. Using appropriate similarity variables, the partial differential equations are transformed into ordinary differential equations which are then solved by homotopy analysis method. For an insight into the problem, the effects of various parameters on different profiles are shown in different graphs.


Sign in / Sign up

Export Citation Format

Share Document