Power Flow Control in DC Microgrids Using an Integral Sliding Mode Control Approach

Author(s):  
Tabassum Haque ◽  
Tushar Kanti Roy ◽  
Farjana Faria ◽  
Most. Mahmuda Khatun ◽  
Tanmoy Sarkar ◽  
...  
Author(s):  
Satyanarayan Sadala ◽  
Balasaheb Patre ◽  
Divyesh Ginoya

This paper introduces a new continuous integral sliding mode control algorithm, where the discontinuous function of the super-twisting control law is replaced with a continuous disturbance observer for the substantial chattering attenuation. In the present integral sliding mode control, the discontinuous function generates chattering that is undesirable for several real-time applications. The proposed control strategy decreases the amplitude of the controller gain compared to the existing integral sliding mode controls, and as a consequence of this, the attenuation of chattering is achieved to a great extent. The efficacy of the proposed control algorithm is validated successfully on the single-input single-output Inverted Pendulum and 2-DOF Helicopter nonlinear coupled multi-input multi-output systems. The simulation and experimental results demonstrate the successful application of the proposed control approach to follow reference inputs and acquire robustness and stabilization of the system in the presence of limited matched perturbations and nonlinearities.


2020 ◽  
pp. 107754632093818
Author(s):  
Lobna T Aboserre ◽  
Ayman A El-Badawy

In this study, integral sliding mode control is proposed for tower cranes to ensure precise tracking of the desired position while reducing the oscillations of the payload. The nonlinear robust controller is designed based on high fidelity nonlinear dynamical model, unlike the decoupled or linearized models used in the literature. The advantage of this approach is reducing the model uncertainties resulting in a lower control effort demand that would be required by the sliding mode controller. Moreover, the stability of the under-actuated tower crane system is analyzed using Lyapunov theory to guarantee the practical stability of error dynamics. Experimental results of the proposed control approach are compared with conventional sliding mode control to show its effectiveness and robustness against real system uncertainties.


2019 ◽  
Vol 9 (12) ◽  
pp. 2503 ◽  
Author(s):  
Quy-Thinh Dao ◽  
Manh-Linh Nguyen ◽  
Shin-ichiroh Yamamoto

Recently, pneumatic artificial muscles (PAMs), a lightweight and high-compliant actuator, have been increasingly used in assistive rehabilitation robots. PAM-based applications must overcome two inherent drawbacks. The first is the nonlinearity due to the compressibility of the air, and the second is the hysteresis due to its geometric construction. Because of these drawbacks, it is difficult to construct not only an accurate mathematical model but also a high-performance control scheme. In this paper, the discrete-time fractional order integral sliding mode control approach is investigated to deal with the drawbacks of PAMs. First, a discrete-time second order plus dead time mathematical model is chosen to approximate the characteristics of PAMs in the antagonistic configuration. Then, the fractional order integral sliding mode control approach is employed together with a disturbance observer to improve the trajectory tracking performance. The effectiveness of the proposed control method is verified in multi-scenario experiments using a physical actuator.


Sign in / Sign up

Export Citation Format

Share Document