Robust integral sliding mode control of tower cranes

2020 ◽  
pp. 107754632093818
Author(s):  
Lobna T Aboserre ◽  
Ayman A El-Badawy

In this study, integral sliding mode control is proposed for tower cranes to ensure precise tracking of the desired position while reducing the oscillations of the payload. The nonlinear robust controller is designed based on high fidelity nonlinear dynamical model, unlike the decoupled or linearized models used in the literature. The advantage of this approach is reducing the model uncertainties resulting in a lower control effort demand that would be required by the sliding mode controller. Moreover, the stability of the under-actuated tower crane system is analyzed using Lyapunov theory to guarantee the practical stability of error dynamics. Experimental results of the proposed control approach are compared with conventional sliding mode control to show its effectiveness and robustness against real system uncertainties.

Author(s):  
Satyanarayan Sadala ◽  
Balasaheb Patre ◽  
Divyesh Ginoya

This paper introduces a new continuous integral sliding mode control algorithm, where the discontinuous function of the super-twisting control law is replaced with a continuous disturbance observer for the substantial chattering attenuation. In the present integral sliding mode control, the discontinuous function generates chattering that is undesirable for several real-time applications. The proposed control strategy decreases the amplitude of the controller gain compared to the existing integral sliding mode controls, and as a consequence of this, the attenuation of chattering is achieved to a great extent. The efficacy of the proposed control algorithm is validated successfully on the single-input single-output Inverted Pendulum and 2-DOF Helicopter nonlinear coupled multi-input multi-output systems. The simulation and experimental results demonstrate the successful application of the proposed control approach to follow reference inputs and acquire robustness and stabilization of the system in the presence of limited matched perturbations and nonlinearities.


2021 ◽  
Author(s):  
Tabassum Haque ◽  
Tushar Kanti Roy ◽  
Farjana Faria ◽  
Most. Mahmuda Khatun ◽  
Tanmoy Sarkar ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Xu Guowei ◽  
Wan Zhenkai ◽  
Li Chunqing

A sliding mode control approach is achieved for Lorenz system based on optimal finite time convergent and integral sliding mode surface. The system perturbation is divided into two parts: the unmatched and the matched parts. Firstly, we design a discontinuous control for the unmatched part which will not be amplified. Secondly, we design a continuous control, that is, the ideal control to stabilize the Lorenz system error states in finite time stabilization. Then the controller based on integral sliding mode is constructed to ensure the robustness. The proposed method is proven to guarantee the stability and the robustness using the Lyapunov theory in the system uncertainties and external perturbation. Finally, the numerical simulations demonstrate that the proposed controller is effective and robust with respect to the perturbation.


2015 ◽  
Vol 25 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Mirza Tariq Hamayun ◽  
Christopher Edwards ◽  
Halim Alwi ◽  
Abdulrahman Bajodah

Abstract In this paper, integral sliding mode control ideas are combined with direct control allocation in order to create a fault tolerant control scheme. Traditional integral sliding mode control can directly handle actuator faults; however, it cannot do so with actuator failures. Therefore, a mechanism needs to be adopted to distribute the control effort amongst the remaining functioning actuators in cases of faults or failures, so that an acceptable level of closed-loop performance can be retained. This paper considers the possibility of introducing fault tolerance even if fault or failure information is not provided to the control strategy. To demonstrate the efficacy of the proposed scheme, a high fidelity nonlinear model of a large civil aircraft is considered in the simulations in the presence of wind, gusts and sensor noise.


Sign in / Sign up

Export Citation Format

Share Document