Modeling and Simulation for the Coupled Transmission Performance Between High-Frequency Microwave and Lightwave

Author(s):  
Na Sun ◽  
Degui Sun ◽  
Yue Han ◽  
Bruce Wessels
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jiangnan Xiao ◽  
Chuang Zhao ◽  
Xingxing Feng ◽  
Xu Dong ◽  
Jiangli Zuo ◽  
...  

With the development trend of wireless and broadband in the communication link and even the whole information industry, the demand of high-frequency microwave bandwidth has been increasing. The RoF network system solves the problem of spectrum congestion in low-frequency band by providing an effective technology for the distribution of high-frequency microwave signals over optical fiber links. However, the traditional mm-wave generation technique is limited by the bandwidth of electronic devices. It is difficult to generate high-frequency and low-phase noise mm-wave signals with pure electrical components. The mm-wave communication technology based on photon assisted can overcome the bandwidth bottleneck of electronic devices and provide the potential for developing the low-cost infrastructure demand of broadband mobile services. This paper will briefly explain the characteristics of the RoF network system and the advantages of high-frequency mm-wave. Then we, respectively, introduce the modulation schemes of RoF mm-wave generation based on photon assisted including directly modulated laser (DML), external modulation, and optical heterodyne. The review mainly focuses on a variety of different mm-wave generation technologies including multifrequency vector mm-wave. Furthermore, we list several approaches to realize the large capacity data transmission techniques and describe the digital signal processing (DSP) algorithm flow in the receiver. In the end, we summarize the RoF network system and look forward to the future.


2019 ◽  
Vol 17 (09) ◽  
pp. 1950060
Author(s):  
Tengfei Dai ◽  
Xia Jin ◽  
Huaze Yang ◽  
Tianran Lin ◽  
Yuantong Gu

Modeling and simulation of the acoustic response in enclosed cavities of a diesel engine are of great significance for optimal design of an engine to achieve a better acoustic performance. Nevertheless, the use of the traditional finite element method (FEM) for the mid to high frequency acoustic prediction is limited by the well-known numerical dispersion errors and the tedious preprocessing of the model. Smoothed finite element methods (SFEMs) proposed originally for solid mechanics have been employed for the modeling of acoustic problems in the low to medium frequency ranges whilst acoustic modeling in the mid to high frequency range remains untouched. This paper comprehensively investigates into the performance of SFEMs in modeling and simulation of mid to high frequency acoustic problems. It is shown that the mass-redistributed edge-based smoothed finite element method (MR-ES-FEM) can yield an excellent prediction result in the mid to high frequency range in terms of accuracy, efficiency and robustness. The MR-ES-FEM is also used to simulate sound propagation in a cylinder head chamber of a four-cylinder diesel engine to prove its effectiveness. The findings presented in this paper offer an in-depth insight for engineers to select suitable numerical methods for solving mid to high frequency acoustic problems in the design of diesel engines.


Sign in / Sign up

Export Citation Format

Share Document