Research on tomato water requirement with drip irrigation under plastic mulch in greenhouse

Author(s):  
Zhiwei Zheng ◽  
Yangren Wang ◽  
Shaosheng Wang ◽  
Baoyong Zhao
2020 ◽  
Vol 7 (01) ◽  
Author(s):  
SK SRIVASTAVA ◽  
PAWAN JEET

A study was conducted to assess the effect of drip irrigation and plastic mulch on growth and seed yield of Semialata. Two types of plastic mulch (green and silver/black) were tested at three levels of irrigation (120%, 100% and 80%) by drip irrigation and one level (100%) by furrow irrigation. The daily water requirement of Semialata was estimated by the equation ETcrop= ETox crop factor. ETcrop is crop water requirement mm/day. ETo (reference evapotranspiration, mm/day) was calculated by FAO calculator which uses temperature and humidity data. In this experiments there were twelve treatments were considered. The treatments were replicated thrice. The experiment was laid in randomized block design. It was observed that drip irrigation with or without plastic mulch is yielding better results in terms of growth parameters and seed yield as compared to furrow irrigation without plastic mulch. It was also observed that maximum suppression (67.58%) of weeds resulted with drip irrigation and silver/black plastic mulch at 80% level of irrigation.


1969 ◽  
Vol 67 (3) ◽  
pp. 328-334
Author(s):  
Megh R. Goyal ◽  
William F. Allison

Cucumbers (Variety Poinsett 76) were drip irrigated during March, 1980 at Fortuna Substation to evaluate the water requirement and effect of silver coated plastic mulch on crop performance. The moist treatment gave significant increases in crop yield at the 5% level compared with wet and dry treatments. The use of plastic mulch further increased production by 4.6 tons per hectare.


2019 ◽  
Vol 62 (6) ◽  
pp. 1697-1704
Author(s):  
Songjun Han ◽  
Di Xu ◽  
Yingduo Yu ◽  
Jiandong Wang ◽  
Yanqun Zhang

Abstract. A large area of rainfed maize ( L.) is planned to be replaced by maize under drip irrigation with plastic mulching (MDI) in Heilongjiang, northeast China, through a “water-saving and grain-increasing action” project. However, knowledge is lacking on the water requirements of maize under MDI. On the basis of a locally developed crop coefficient for a site, the spatial and temporal variations in crop water requirement (ETc) and net irrigation requirement (Nir) of maize under MDI in Heilongjiang were evaluated. The average ETc and Nir of maize under MDI in the period from 1960 to 2017 for 29 meteorological stations were 279 to 388 mm and 73 to 198 mm, respectively, which are approximately 10% and 15% lower than the ETc and Nir under conventional surface irrigation (NSI). The differences in ETc and Nir between the two irrigation technologies are significant in the southwestern region, which demonstrates that the intensive planning of MDI in the southwest is justified. The gross irrigation requirement of maize under MDI in an excessive drought year is estimated as 437 million m3 for the project, which is 137 million m3 less than the irrigation requirement using NSI.HighlightsAverage ETc and Nir of maize under MDI are approximately 10% and 15% lower than those under NSI.The differences in ETc and Nir are significant in the southwestern region of Heilongjiang.The estimated gross irrigation requirement of maize under MDI is much less than that under NSI. Keywords: Crop coefficient, Drip irrigation, Maize, Northeastern China, Plastic mulch, Water requirement.


2019 ◽  
Vol 7 (6) ◽  
pp. 214-218
Author(s):  
Manpreet Singh Preet ◽  
Rajesh Kumar ◽  
VP Singh ◽  
Jitendra Kumar ◽  
AK Singh ◽  
...  

2019 ◽  
Vol 41 (1) ◽  
pp. 42604
Author(s):  
Anita Cristina Costa da Silva ◽  
Willian Fernandes de Almeida ◽  
Luiz Antonio Lima ◽  
Mayra Carolina De Oliveira ◽  
Alexandre Lasmar Guimarães

 The effects of pulse drip, drip line position and soil mulch on water use efficiency in yields of zucchini cv. Clarinda were evaluated. The experiment was conducted in the experimental area of the Engineering Department of the Federal University of Lavras, Lavras, Minas Gerais State, Brazil, for two years. For the first year of the experiment, the experimental design was a randomized block design with a 2 x 2 x 2 factorial design (continuous and pulse drip irrigation, surface and subsurface dripping, with and without plastic mulch), with four replications. For the second year of the experiment, the design was completely randomized in a 2 x 2 x 2 factorial design with eight treatments and five replications. In relation to the position of the drip line, the subsurface drip line was installed at a 0.15-m depth, and the soil mulch was made with double-sided plastic (white/black). The results indicated that pulse drip irrigation did not affect the yield of zucchini and that soil mulch increased the yield and water use efficiency. In terms of the drip line position, the subsurface drip line increased the yield in the first year, but it had no effect on water use efficiency.


2019 ◽  
Vol 62 (3) ◽  
pp. 571-584 ◽  
Author(s):  
Chuanjuan Wang ◽  
Jiandong Wang ◽  
Di Xu ◽  
Yanqun Zhang ◽  
Shihong Gong ◽  
...  

Abstract. Our investigations into the water consumption patterns of maize ( L.) grown using surface drip irrigation with and without plastic mulching were based on three consecutive years (2014-2016) of field experiments in a typical area of northeastern China. We evaluated seasonal crop evapotranspiration (ETc) and how it was partitioned into soil evaporation (Es) and plant transpiration (Tp) during the season. Development of crop coefficient (Kc) prediction models was based on the growth day (GD) and leaf area index (LAI) of the crop, as well as the growing degree-days of air (GDDair) and soil (GDDsoil). Results showed that plastic mulching significantly reduced Es by 41.6 to 53.5 mm (p < 0.05) compared to not mulching, while it increased Tp by 23.2 to 40.4 mm (p > 0.05) for spring-planted maize. While plastic mulching normally reduced ETc during the crop growth period, the change was not significant (p > 0.05). The three-year mean Kc for the maize growth period declined by 3.0% under plastic mulching. The mean Kc was lower for the plastic mulching treatment than for the non-mulching treatment in both the early and late season, while it was slightly higher at mid-season. The three-year means of mid-season Kc (Kc-mid) under plastic mulching and non-mulching were 1.06 and 1.05 lower, respectively, than the FAO-56 recommended value. In addition, the Kc estimation model based on GDDsoil achieved the best fitting accuracy. We recommend applying this GDDsoil model to mulched drip irrigation of maize in northeastern China to obtain more accurate Kc estimation for optimizing and developing mulched drip irrigation in this region. Keywords: Crop coefficient, Drip irrigation, Maize, Northeastern China, Plastic mulch.


Sign in / Sign up

Export Citation Format

Share Document