Floquet Modal Analysis to Study Radiation Pattern for Coupled Almost Periodic Antenna Array

Author(s):  
Ben Latifa Nader ◽  
Hamdi Bilel ◽  
Aguili Taoufik
Doklady BGUIR ◽  
2020 ◽  
pp. 5-13
Author(s):  
O. A. Yurtsev ◽  
R. Ch. Shimanouski

The article explores the holographic method of measuring the antenna pattern. A flat antenna array is used as the antenna under test, and a planar rectangular surface is used as the surface on which the amplitudephase distribution in the near field is measured. Using the example of a flat antenna array, we consider the influence of the size of the measurement surface of the amplitude-phase distribution of the field in a plane orthogonal to the reconstruction plane of the radiation pattern. Antenna emitters are excited with a combined amplitude distribution and linear phase distribution. The field in the longitudinal zone of the lattice is determined using the Kirchhoff integral. The reconstructed radiation patterns are estimated using the amplitude-phase distribution over the entire measurement plane in comparison with the array radiation pattern in the far zone. A numerical analysis of the influence on the errors in determining the parameters of the lattice radiation pattern using the holographic method is also carried out: the number of columns of the amplitude-phase distribution on the measurement plane, the position of this plane in three coordinates relative to the plane of the aperture of the lattice. It is shown that if the spacing of the points of measurement of the amplitude-phase distribution and the pitch of the lattice are equal, to restore the radiation pattern using the holographic method, it is sufficient to use one column of the amplitude-phase distribution on the measurement plane. This greatly simplifies and reduces the cost of the measurement process and the necessary equipment. Examples of determining errors in measuring the parameters of the antenna array when shifting the plane of measurement of the amplitude-phase distribution in three coordinates are given.


2011 ◽  
Vol 08 (02) ◽  
pp. 171-179
Author(s):  
T. S. JEYALI LASEETHA ◽  
R. SUKANESH

This paper discusses the deployment of Genetic Algorithm optimization method for the synthesis of antenna array radiation pattern in adaptive beamforming. The synthesis problem discussed is to find the weights of the Uniform Linear Antenna array elements that are optimum to provide the radiation pattern with maximum reduction in the sidelobe level. This technique proved its effectiveness in improving the performance of the antenna array.


2021 ◽  
Author(s):  
Ali Durmus ◽  
Rifat KURBAN ◽  
Ercan KARAKOSE

Abstract Today, the design of antenna arrays is very important in providing effective and efficient wireless communication. The purpose of antenna array synthesis is to obtain a radiation pattern with low side lobe level (SLL) at a desired half power beam width (HPBW) in far-field. The amplitude and position values ​​of the array elements can be optimized to obtain a radiation pattern with suppressed SLLs. In this paper swarm-based meta-heuristic algorithms such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Mayfly algorithm (MA) and Jellyfish Search (JS) algorithms are compared to realize optimal design of linear antenna arrays. Extensive experiments are conducted on designing 10, 16, 24 and 32-element linear arrays by determining the amplitude and positions. Experiments are repeated 30 times due to the random nature of swarm-based optimizers and statistical results show that performance of the novel algorithms, MA and JS, are better than well-known methods PSO and ABC.


2019 ◽  
Vol 21 (7) ◽  
pp. 075602 ◽  
Author(s):  
Yanzhong Yu ◽  
Han Huang ◽  
Shunda Lin ◽  
Musheng Chen ◽  
Qiwen Zhan

Sign in / Sign up

Export Citation Format

Share Document