Indirect adaptive robust control of electro-hydraulic systems driven by single-rod hydraulic actuator

Author(s):  
Song Liu ◽  
Bin Yao
2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Cungui Yu ◽  
Xianwei Qi

This paper deals with the high performance adaptive robust motion control of electrohydraulic servo system driven by dual vane hydraulic rotary actuator. The recently developed adaptive robust control theory is used to handle the nonlinearities and modelling uncertainties in hydraulic systems. Aside from the difficulty of handling parametric variations, the traditional adaptive robust controller (ARC) is also a little complicated in practice. To address these challenging issues, a simplified adaptive robust control with varying boundary discontinuous projection is developed to enhance the robustness of the closed-loop system, based on the features of hydraulic rotary actuator. Compared with previous ARC controller, the resulting controller has a simple algorithm for more suitable implementation and can handle parametric variations via nonlinear robust design. The controller theoretically achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncertainties and uncertain nonlinearities. Extensive simulation results are obtained for a hydraulic rotary actuator to verify the high performance nature of proposed control strategy.


Author(s):  
Amit Mohanty ◽  
Bin Yao

In a general DIARC framework [13], the emphasis is always on the guaranteed transient performance and accurate trajectory tracking in the presence of uncertain nonlinearity and parametric uncertainties along with accurate parameter estimation for secondary purpose such as system health monitoring and prognosis. Need for accurate parameter estimation calls for the use of Least Square Estimation (LSE) type of algorithms for such a seamless integration of good tracking performance and accurate parameter estimation. This paper presents a physical model based integrated direct/indirect adaptive robust control (DIARC) strategy for a hydraulically actuated 3-DOF robotic arm. To avoid the need of acceleration feedback for DIARC back-stepping design, the property, that the adjoint matrix and the determinant of the inertial matrix could be linearly parameterized by certain suitably selected parameters is utilized. Unlike gradient-type parameter estimation law, which used overparamterization, there is no multiple estimation of the single parameter. Theoretically, the resulting controller is able to take into account not only the effect of parametric uncertainties coming from the payload and various hydraulic parameters but also the effect of uncertain nonlinearities. Furthermore, the proposed DIARC controller guarantees a prescribed output tracking transient performance and final tracking accuracy while achieving asymptotic output tracking in the presence of parametric uncertainties only. Simulation results based on a three degree-of-freedom (DOF) hydraulic robot arm (a scaled down version of an industrial back-hoe/excavator arm) are presented to illustrate the proposed control algorithm.


Author(s):  
Amit Mohanty ◽  
Bin Yao

In a general Adaptive Robust Control (ARC) framework, the emphasis is always on the guaranteed transient performance and accurate trajectory tracking in the presence of uncertain nonlinearity and parametric uncertainties. However, when secondary purposes such as system health monitoring and prognosis are of equal importance, intelligent integration of output tracking performance oriented direct adaptive robust control (DARC) and the recently proposed accurate parameter estimation-based indirect adaptive robust control (IARC) is required. In this paper, we will consider such a seamless integration for a hydraulic robotic arm. The newly developed IARC design is first applied to the trajectory tracking for the robotic arm but with an improved estimation model, in which accurate parameter estimates are obtained through a parameter estimation algorithm that is based on physical dynamics rather than the tracking error dynamics. An integrated direct/indirect adaptive robust controller (DIARC) is then presented that preserves the excellent transient tracking performance of the direct ARC designs as well as the better parameter estimation process of the IARC design. The proposed Integrated Direct/Indirect Adaptive Robust Controller (DIARC) achieves the controller-identifier separation, thus enabling certain modularity in the controller design.


Sign in / Sign up

Export Citation Format

Share Document