Integrated direct/indirect adaptive robust control of a class of nonlinear systems preceded by unknown dead-zone nonlinearity

Author(s):  
Chuxiong Hu ◽  
Bin Yao ◽  
Qingfeng Wang
2011 ◽  
Vol 383-390 ◽  
pp. 290-296
Author(s):  
Yong Hong Zhu ◽  
Wen Zhong Gao

Wavelet neural network based adaptive robust output tracking control approach is proposed for a class of MIMO nonlinear systems with unknown nonlinearities in this paper. A wavelet network is constructed as an alternative to a neural network to approximate unknown nonlinearities of the classes of systems. The proposed WNN adaptive law is used to compensate the dynamic inverse errors of the classes of systems. The robust control law is designed to attenuate the effects of approximate errors and external disturbances. It is proved that the controller proposed can guarantee that all the signals in the closed-loop control system are uniformly ultimately bounded (UUB) in the sense of Lyapunov. In the end, a simulation example is presented to illustrate the effectiveness and the applicability of the suggested method.


2018 ◽  
Vol 41 (10) ◽  
pp. 2789-2802 ◽  
Author(s):  
Soheil Ahangarian Abhari ◽  
Farzad Hashemzadeh ◽  
Mahdi Baradarannia ◽  
Hamed Kharrati

This paper presents an adaptive robust control algorithm for the nonlinear dynamics of robot manipulators with unknown backlash in gears. The basic nonlinear model of a serial manipulator robot is used for the controller design, and this is combined with the nonlinear proposed dead zone model, based on the input and output torque. The main idea of providing this model is to achieve a dynamic model of the system considering the backlash of the robot joint gears, and having less complexity such that the developed controller does not need the inverse backlash model. The adaptive robust controller is developed, without using the inverse backlash model. The proposed controller is designed based on an unknown dead zone parameter and it guarantees the stability and path tracking of the robot trajectory with unknown dead zone parameter in the desired range. Numerical simulations are conducted to show the effectiveness of the proposed controller. Finally, the efficiency and capability of the proposed controller in dealing with the unknown backlash nonlinearities in gears of the manipulator are demonstrated by experimental results with a five-bar manipulator.


Sign in / Sign up

Export Citation Format

Share Document