Influence of Grid-connection Photovoltaic on Power Quality and Relay Protection of Distribution Network

Author(s):  
Tianhua Ye ◽  
Long Jin ◽  
Ruxia Xue
2021 ◽  
Vol 2143 (1) ◽  
pp. 012034
Author(s):  
Yin Cheng ◽  
Gang Cao ◽  
Yaohong Liu ◽  
Yi Zhou

Abstract On the one hand, the application of microgrid can effectively cut down the effect of distributed generation on distribution network, on the other hand, it helps to improve the power quality of distribution network. However, for the distribution network, a single multi-functional inverter has limited effect on the improvement of its power quality. Therefore, the allocation control of power quality by decentralized multi-functional inverters can further improve the utilization of inverters. This paper proposes to calculate the output current of multiple multi-functional inverters according to the harmonic and reactive current of the parallel node and the residual capacity of the multi-functional inverter. The simulation results show that the allocation control strategy proposed in this paper can effectively control the compensation capacity of the multi-functional inverter, so as to control the harmonic at the grid connection in place.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Busra Uzum ◽  
Ahmet Onen ◽  
Hany M. Hasanien ◽  
S. M. Muyeen

In order to meet the electricity needs of domestic or commercial buildings, solar energy is more attractive than other renewable energy sources in terms of its simplicity of installation, less dependence on the field and its economy. It is possible to extract solar energy from photovoltaic (PV) including rooftop, ground-mounted, and building integrated PV systems. Interest in rooftop PV system applications has increased in recent years due to simple installation and not occupying an external area. However, the negative effects of increased PV penetration on the distribution system are troublesome. The power loss, reverse power flow (RPF), voltage fluctuations, voltage unbalance, are causing voltage quality problems in the power network. On the other hand, variations in system frequency, power factor, and harmonics are affecting the power quality. The excessive PV penetration also the root cause of voltage stability and has an adverse effect on protection system. The aim of this article is to extensively examines the impacts of rooftop PV on distribution network and evaluate possible solution methods in terms of the voltage quality, power quality, system protection and system stability. Moreover, it is to present a comparison of the advantages/disadvantages of the solution methods discussed, and an examination of the solution methods in which artificial intelligence, deep learning and machine learning based optimization and techniques are discussed with common methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. S. Ballal ◽  
H. M. Suryawanshi ◽  
T. Venkateswara Reddy

The basic power quality problems in the distribution network are voltage sag (dip), voltage flickering, and the service interruptions. STATCOM is a Flexible AC Transmission Systems (FACTS) technology device which can independently control the flow of reactive power. This paper presents the simulation and analysis of a STATCOM for voltage dip and voltage flickering mitigation. Simulations are carried out in MATLAB/Simulink to validate the performance of the STATCOM. A comparison between the six-pulse inverter and the five-level diode-clamped inverter is carried out for the performance of 66/11 KV distribution system.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3374-3379

This project work presents a proposed D-STATCOM system, Which is implemented in the distribution network. In the present scenario, the customer or consumer should be supplied with a quality power. The power quality issues like voltage sag, swell, lightning surges etc, can be reduced by using several advanced techniques. Among all these power quality issues voltage sag is considered and has been compensated in this project work by using D-STATCOM. The major advantage of D-STATCOM is that instead of installing the compensating device in the transmission and distribution line, the D-STATCOM unit is implemented at the consumers premises to maintain stable voltage for the connected electrical equipment’s and also to provide safe operation of the electrical equipment’s by extending their life time. The software ie., implemented by using MATLAB Simulink and the results are also verified experimentally by a hardware unit


Sign in / Sign up

Export Citation Format

Share Document