Hyperspectral Analysis Based Anthocyanin Index (ARI2) during Cocoa Bean Fermentation Process

Author(s):  
Jessica Ruiz Reyes ◽  
Juan Soto Bohorquez ◽  
William Ipanaque Alama
2007 ◽  
Vol 73 (6) ◽  
pp. 1809-1824 ◽  
Author(s):  
Nicholas Camu ◽  
Tom De Winter ◽  
Kristof Verbrugghe ◽  
Ilse Cleenwerck ◽  
Peter Vandamme ◽  
...  

ABSTRACT The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named“ Acetobacter senegalensis” (A. tropicalis-like) and “Acetobacter ghanaensis” (A. syzygii-like).


2017 ◽  
Vol 9 (2) ◽  
pp. 50-54
Author(s):  
Murna Muzaifa ◽  
Yusya Abubakar ◽  
Faitzal Haris

Fermentation process is the most crucial step in the formation of the flavor and aroma of the cocoa bean. Cocoa bean fermentation triggers an array of chemical changes within the bean.These chemical changes are vital to the development of the complex and much-loved flavour known as “chocolate”. Fermentation involves a number of specific microorganisms that play a role during fermentation. The aim of this research was to analized microorganism growth profil of Aceh cacao during fermentation. Fermentation was conducted on 6 days with  different aerations (agitation every 24 and 48 hours). The result showed that growth profile of microorganism during fermentation relatively  had similar trend. Yeast dominated on the early fermentation, lactid bacteria reached the higest population on day 3 and acetic acid bacteria on day 4. Better quality of fermented cacao was resulted on every 48 hours of agitation  that reached 70,19% of full fermentation.


2009 ◽  
Vol 10 (1) ◽  
pp. 36-46
Author(s):  
Dian Adi A. Elisabeth ◽  
Ludivica Endang Setijorini

Basic of cocoa bean preparation process is fermentation. Fermentation is done especially to improve and build specific chocolate flavour of cocoa bean and its products, i. e. cocoa liquor, butter, and powder; and also to decrease the disliked flavors, like bitter and acid. Research of cocoa bean fermentation was hold on in Subak Abian Pucaksari, Tabanan. This research involved 20 cooperative farmers with 0,5 hectare farm area per each farmer. The treatment used was time of cocoa bean fermentation, i.e. without fermentation, not fully fermentation (4 days), and fully fermentation (5 days). Variables observed were dried cocoa beans physic and chemical quality, and also cocoa products chemical and organoleptic quality. Organoleptic test done to cocoa liquor and powder was descriptive and ranking test used 15 semi-trained panelists. The result showed that the fermentation process had significant influence to dried cocoa beans chemical quality and its products. Fermentation had no significant influence to dried cocoa beans physic quality. For organoleptic quality attributes, all panelists gave the highest rank for cocoa liquor and powder prepared from fully fermented cocoa bean.


2012 ◽  
Vol 78 (15) ◽  
pp. 5395-5405 ◽  
Author(s):  
Gilberto Vinícius de Melo Pereira ◽  
Maria Gabriela da Cruz Pedrozo Miguel ◽  
Cíntia Lacerda Ramos ◽  
Rosane Freitas Schwan

ABSTRACTSpontaneous cocoa bean fermentations performed under bench- and pilot-scale conditions were studied using an integrated microbiological approach with culture-dependent and culture-independent techniques, as well as analyses of target metabolites from both cocoa pulp and cotyledons. Both fermentation ecosystems reached equilibrium through a two-phase process, starting with the simultaneous growth of the yeasts (withSaccharomyces cerevisiaeas the dominant species) and lactic acid bacteria (LAB) (Lactobacillus fermentumandLactobacillus plantarumwere the dominant species), which were gradually replaced by the acetic acid bacteria (AAB) (Acetobacter tropicaliswas the dominant species). In both processes, a sequence of substrate consumption (sucrose, glucose, fructose, and citric acid) and metabolite production kinetics (ethanol, lactic acid, and acetic acid) similar to that of previous, larger-scale fermentation experiments was observed. The technological potential of yeast, LAB, and AAB isolates was evaluated using a polyphasic study that included the measurement of stress-tolerant growth and fermentation kinetic parameters in cocoa pulp media. Overall, strainsL. fermentumUFLA CHBE8.12 (citric acid fermenting, lactic acid producing, and tolerant to heat, acid, lactic acid, and ethanol),S. cerevisiaeUFLA CHYC7.04 (ethanol producing and tolerant to acid, heat, and ethanol), andAcetobacter tropicalisUFLA CHBE16.01 (ethanol and lactic acid oxidizing, acetic acid producing, and tolerant to acid, heat, acetic acid, and ethanol) were selected to form a cocktail starter culture that should lead to better-controlled and more-reliable cocoa bean fermentation processes.


2016 ◽  
Vol 63 (5) ◽  
pp. 347-355 ◽  
Author(s):  
S. Miescher Schwenninger ◽  
S. Freimüller Leischtfeld ◽  
C. Gantenbein-Demarchi

Sign in / Sign up

Export Citation Format

Share Document