pathway analyses
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 308)

H-INDEX

24
(FIVE YEARS 7)

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Toru Sakurai ◽  
Kenji Katsumata ◽  
Ryutaro Udo ◽  
Tomoya Tago ◽  
Kenta Kasahara ◽  
...  

This study aimed to validate and reanalyze urinary biomarkers for detecting colorectal cancers (CRCs). We previously conducted urinary metabolomic analyses using capillary electrophoresis-mass spectrometry and found a significant difference in various metabolites, especially polyamines, between patients with CRC and healthy controls (HC). We analyzed additional samples and confirmed consistency between the newly and previously analyzed data. In total, we included 36 HC, 34 adenoma (AD), and 214 CRC samples, which were used for subsequent analyses. Among the 132 quantified metabolites, 16 exhibited consistent differences in both datasets, which included polyamines, etc. Pathway analyses of the integrated data revealed significant differences in many metabolites, such as glutamine, and metabolites of the TCA and urea cycles. The discrimination ability of the combination of multiple metabolites among the three groups was evaluated, which yielded higher sensitivity than tumor markers. The Mann–Whitney test was employed to evaluate the prognosis predictivity of the assessed metabolites and the difference between the patients with or without recurrence, which yielded 16 significantly different metabolites. Among these 16 metabolites, 11 presented significant prognosis predictivity. These data indicated the potential of metabolite-based discrimination of patients with CRC and AD from HC and prognosis predictivity of the monitored metabolites.


2022 ◽  
Author(s):  
Jiaying Lin ◽  
Guangman Cui ◽  
Wenwei Jiang ◽  
Zhousheng Lin ◽  
Xinyue Lan ◽  
...  

Abstract Depression contributes to enhanced initiation, development and metastasis of breast cancer. Despite epidemiological studies and experimental data suggest that depression and breast cancer may share a common biological mechanism, the results from these studies remain inconsistent. Here, we fully focus on the underlying biological mechanism behind the adverse effects of depression against breast cancer patients, and highlight the practical therapeutic intervention and improving quality of life. Publicly available datasets deposited in the Gene Expression Omnibus (GEO) were downloaded. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the differentially expressed genes (DEGs), which were extracted by using R tools, were performed. The protein-protein interaction network of the target DEGs was constructed using Cytoscape software and the hub genes were identified. In our study, we found that genes encoding proinflammatory cytokine, such as IL-1β and TNF, had significantly increased expression in depression. Following chronically stimulated by TNFα and IL-1β (usually for 14-18 days), inflammatory cancer-associated fibroblasts (CAFs) had elevated expression of inflammatory genes. Furthermore, the TNF/TNFRSF1β and LEP/LEPR regulatory axes were proven to be hub pathways of the crosstalk between depression and breast cancer. Our findings demonstrate that inflammatory factors are messengers linking depression and breast cancer, and provided further guidance in clinical medication.


2021 ◽  
Vol 22 (24) ◽  
pp. 13188
Author(s):  
Ruchika Bhawal ◽  
Qin Fu ◽  
Elizabeth T. Anderson ◽  
Gary E. Gibson ◽  
Sheng Zhang

Serum metabolomics and lipidomics are powerful approaches for discovering unique biomarkers in various diseases and associated therapeutics and for revealing metabolic mechanisms of both. Treatment with Benfotiamine (BFT), a thiamine prodrug, for one year produced encouraging results for patients with mild cognitive impairment and mild Alzheimer’s disease (AD). In this study, a parallel metabolomics and lipidomics approach was applied for the first exploratory investigation on the serum metabolome and lipidome of patients treated with BFT. A total of 315 unique metabolites and 417 lipids species were confidently identified and relatively quantified. Rigorous statistical analyses revealed significant differences between the placebo and BFT treatment groups in 25 metabolites, including thiamine, tyrosine, tryptophan, lysine, and 22 lipid species, mostly belonging to phosphatidylcholines. Additionally, 10 of 11 metabolites and 14 of 15 lipid species reported in previous literature to follow AD progression changed in the opposite direction to those reported to reflect AD progression. Enrichment and pathway analyses show that significantly altered metabolites by BFT are involved in glucose metabolism and biosynthesis of aromatic amino acids. Our study discovered that multiple novel biomarkers and multiple mechanisms that may underlie the benefit of BFT are potential therapeutic targets in AD and should be validated in studies with larger sample sizes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fan Yang ◽  
Xiaoli Fan ◽  
Yifeng Liu ◽  
Yi Shen ◽  
Shenglan Zhao ◽  
...  

Autoimmune hepatitis (AIH) is a chronic liver disease caused by disruption of liver immune homeostasis. The effect of dendritic cells (DCs) on the pathogenesis of AIH is not fully understood. Long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) have been shown to play critical roles in the regulation of cell function. In this study, we analyzed the immunophenotypic characteristics of DCs in the peripheral blood. The percentage of mature DCs was higher in AIH patients than in healthy controls (HCs), and the proportion of mature DCs decreased after treatment. We isolated monocyte-derived DCs (moDCs) from the peripheral blood, obtained whole RNA-sequencing (RNA-seq) data for the moDCs from the two groups, and identified differentially expressed (DE) lncRNAs, circRNAs, miRNAs and mRNAs. In addition, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for the DE mRNAs and constructed competing endogenous RNA (ceRNA) networks. ENST00000543334, hsa_circ_0000279, and hsa_circ_0005076 were selected and validated by RT-qPCR. These results provide a possible molecular mechanism of DCs in the pathogenesis of AIH and identify some potential therapeutic targets.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1840
Author(s):  
Galina T. Shishkina ◽  
Natalia V. Gulyaeva ◽  
Dmitriy A. Lanshakov ◽  
Tatyana S. Kalinina ◽  
Mikhail V. Onufriev ◽  
...  

Acute cerebral ischemia induces distant inflammation in the hippocampus; however, molecular mechanisms of this phenomenon remain obscure. Here, hippocampal gene expression profiles were compared in two experimental paradigms in rats: middle cerebral artery occlusion (MCAO) and intracerebral administration of lipopolysaccharide (LPS). The main finding is that 10 genes (Clec5a, CD14, Fgr, Hck, Anxa1, Lgals3, Irf1, Lbp, Ptx3, Serping1) may represent key molecular links underlying acute activation of immune cells in the hippocampus in response to experimental ischemia. Functional annotation clustering revealed that these genes built the same clusters related to innate immunity/immunity/innate immune response in all MCAO differentially expressed genes and responded to the direct pro-inflammatory stimulus group. The gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses also indicate that LPS-responding genes were the most abundant among the genes related to “positive regulation of tumor necrosis factor biosynthetic process”, “cell adhesion”, “TNF signaling pathway”, and “phagosome” as compared with non-responding ones. In contrast, positive and negative “regulation of cell proliferation” and “HIF-1 signaling pathway” mostly enriched with genes that did not respond to LPS. These results contribute to understanding genomic mechanisms of the impact of immune/inflammatory activation on expression of hippocampal genes after focal brain ischemia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuliang Sun ◽  
Jianxiong Zhao ◽  
Xiaoru Sun ◽  
Guangxin Ma

Tumor necrosis factor-α–induced protein 8 (TNFAIP8) is a member of the TIPE/TNFAIP8 family which is associated with inflammation and tumorigenesis. The potential role of TNFAIP8 in a tumor immune microenvironment in skin cutaneous melanoma (SKCM) has not yet been investigated. The TNFAIP8 expression was evaluated via gene expression profiling interactive analysis (GEPIA). We also evaluated the influence of TNFAIP8 on overall survival via GEPIA and PrognoScan. After GO and KEGG pathway analyses, the correlation between the TNFAIP8 expression level and immune cells or gene markers of the immune infiltration level was explored by R-language. The result showed the TNFAIP8 expression was significantly reduced in SKCM in comparison with normal control. In SKCM, the TNFAIP8 expression in higher levels was associated with the better overall survival. The high expression of TNFAIP8 was positively correlated with the immune score and promoted immune cell infiltration in SKCM patients. TNFAIP8 can be a positive prognosis marker or new immunotherapy target in SKCM.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wendan He ◽  
Yanru Yang ◽  
Longgan Cai ◽  
Qiaoling Lei ◽  
Zhongdong Wang ◽  
...  

Abstract Background This study systematically evaluated microRNA (miRNA) expression patterns in peri-miniscrew implant crevicular fluid (PMICF) in orthodontic patients. Methods Next-generation sequencing (NGS) was performed to obtain miRNA profiles in PMICF or gingival crevicular fluid (GCF) collected from 3 healthy volunteers (H), 3 peri-implantitis patients (PMSII) and 5 periodontitis patients (P). MiRNA expression patterns were compared between normal and orthodontic PMICF and GCF. Differentially expressed miRNAs were estimated by quantitative real-time PCR (qRT-PCR). Enrichment analyses of the gene targets controlled by these miRNAs were conducted by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Results Compared with healthy donors, in PMSII patients, a total of 206 upregulated miRNAs and 152 downregulated miRNAs were detected in PMICF, while periodontitis patients had 333 upregulated miRNAs and 318 downregulated miRNAs. MiR-544a, miR-1245b-3p, miR-1825, miR-4291, miR-3689e, and miR-4477a were chosen randomly for further examination. qRT-PCR examination confirmed that the expression levels of miR-1245b-3p and miR-4291 were higher in PMSII than in H samples and that the expression levels of miR-1825 were higher in PMSII than in P samples. However, contrary to the NGS results, qRT-PCR analysis showed decreased expression of miR544a in PMSII. MiR3689e and miR4477a expression did not differ significantly among all samples. According to GO and KEGG pathway analyses of miR-1825, miR-4291, and miR-1245b-3p high enrichment of target genes involved in the PI3K-AKT signalling pathway was observed. Conclusions The NGS analysis of normal and orthodontic PMICF/CGF showed different miRNA profiles, which may lay the foundation for future research on the molecular mechanism of PMSII. miR-4291, miR-1245b-3p and miR-1825 may be used as diagnostic markers and potential therapeutic targets for PMSII.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hoai Huong Thi Le ◽  
Chen-wei Liu ◽  
Philip Denaro ◽  
Jordan Jousma ◽  
Ning-Yi Shao ◽  
...  

Abstract Background Electronic-cigarette (e-cig) usage, particularly in the youth population, is a growing concern. It is known that e-cig causes endothelial dysfunction, which is a risk factor for the development of cardiovascular diseases; however, the mechanisms involved remain unclear. We hypothesized that long noncoding RNAs (lncRNAs) may play a role in e-cig-induced endothelial dysfunction. Methods Here, we identified lncRNAs that are dysregulated in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) following 24 h of e-cig aerosol extract treatment via microarray analysis. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analyses of the dysregulated mRNAs following e-cig exposure and constructed co-expression networks of the top 5 upregulated lncRNAs and the top 5 downregulated lncRNAs and the mRNAs that are correlated with them. Furthermore, the functional effects of knocking down lncRNA lung cancer-associated transcript 1 (LUCAT1) on EC phenotypes were determined as it was one of the significantly upregulated lncRNAs following e-cig exposure based on our profiling. Results 183 lncRNAs and 132 mRNAs were found to be upregulated, whereas 297 lncRNAs and 413 mRNAs were found to be downregulated after e-cig exposure. We also observed that e-cig caused dysregulation of endothelial metabolism resulting in increased FAO activity, higher mitochondrial membrane potential, and decreased glucose uptake and glycolysis. These results suggest that e-cig alters EC metabolism by increasing FAO to compensate for energy deficiency in ECs. Finally, the knockdown of LUCAT1 prevented e-cig-induced EC dysfunction by maintaining  vascular barrier, reducing reactive oxygen species level, and increasing migration capacity. Conclusion This study identifies an expression profile of differentially expressed lncRNAs and several potential regulators and pathways in ECs exposed to e-cig, which provide insights into the regulation of lncRNAs and mRNAs and the role of lncRNA and mRNA networks in ECs associated e-cig exposure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ishita Choudhary ◽  
Thao Vo ◽  
Kshitiz Paudel ◽  
Xue Wen ◽  
Richa Gupta ◽  
...  

AbstractLung epithelial lining fluid (ELF) harbors a variety of proteins that influence homeostatic and stress responses in the airspaces. Exosomes, nano-sized extracellular vesicles, contain many proteins that vary in abundance and composition based on the prevailing conditions. Ozone causes inflammatory responses in the airspaces of experimental animals and humans. However, the exosomal protein signatures contained within the ELF from ozone-exposed lung airspaces remain poorly characterized. To explore this, we hypothesized that ozone triggers the release of exosome-bound inflammatory proteins from various cells that reflect mucoobstructive lung disease. Accordingly, we repetitively exposed adult male and female C57BL/6 mice to HEPA-filtered air (air) or 0.8 ppm ozone (4 h per day) for 14 days (five consecutive days of exposure, 2 days of rest, five consecutive days of exposure, 2 days of rest, four consecutive days of exposure). Exosome-bound proteomic signatures, as well as the levels of soluble inflammatory mediators in the bronchoalveolar lavage fluid (BALF), were determined 12–16 h after the last exposure. Principal component analyses of the exosome-bound proteome revealed a clear distinction between air-exposed and ozone-exposed mice, as well as between ozone-exposed males and ozone-exposed females. In addition to 575 proteins that were enriched in both sexes upon ozone exposure, 243 and 326 proteins were enriched uniquely in ozone-exposed males and females, respectively. Ingenuity pathway analyses on enriched proteins between ozone- and air-exposed mice revealed enrichment of pro-inflammatory pathways. More specifically, macrophage activation-related proteins were enriched in exosomes from ozone-exposed mice. Cytokine analyses on the BALF revealed elevated levels of G-CSF, KC, IP-10, IL-6, and IL-5 in ozone-exposed mice. Finally, the histopathological assessment revealed significantly enhanced intracellular localization of mucoinflammatory proteins including MUC5B and FIZZ1 in ozone-exposed mice in a cell-specific manner indicating the cellular sources of the proteins that are ferried in the exosomes upon ozone-induced lung injury. Collectively, this study identified exosomal, secretory, and cell-specific proteins and biological pathways following repetitive exposure of mice to ozone.


Sign in / Sign up

Export Citation Format

Share Document