scholarly journals Digital notch filter based active damping for LCL filters

Author(s):  
Wenli Yao ◽  
Yongheng Yang ◽  
Xiaobin Zhang ◽  
Frede Blaabjerg
2014 ◽  
Vol 986-987 ◽  
pp. 1169-1172
Author(s):  
Ping Wang ◽  
Meng Meng Cai

The LCL filter is widely applied as interface between grid-connected inverter and grid due to the preferable high frequency attenuation characteristic. Under the condition of weak grid, impedance value of grid model cannot be ignored, the existence of grid impedance results in different LCL resonant frequencies, which will arise challenges of traditional active damping control. Based on the analysis of band pass filter using active damping control strategy, an adaptive active damping control is proposed in this paper by introducing the application of active notch filter, which can adjust the position of negative resonance point adaptively so as to manage sudden grid changes. Theoretical analysis and simulation results presented on the platform of grid-connected PV inverter system indicate the effectiveness and adaptability of this active damping strategy.


Author(s):  
Rahmad Hidayat ◽  
Ninik Sri Lestari ◽  
Herawati Herawati ◽  
Givy Devira Ramady ◽  
Sudarmanto Sudarmanto ◽  
...  

An electrocardiogram (ECG) is a means of measuring and monitoring important signals from heart activity. One of the major biomedical signal issues such as ECG is the issue of separating the desired signal from noise or interference. Different kinds of digital filters are used to distinguish the signal components from the unwanted frequency range to the ECG signal. To address the question of noise to the ECG signal, in this paper the digital notch filter IIR 47 Hz is designed and simulated to demonstrate the elimination of 47 Hz noise to obtain an accurate ECG signal. The full architecture of the structure and coefficient of the IIR notch filter was carried out using the FDA Tool. Then the model is finished with the help of Simulink and the MATLAB script was to filter out the 47 Hz noise from the signal of ECG. For this purpose, the normalized least mean square (NLMS) algorithm was used. The results indicate that before being filtered and after being filtered it clearly shows the elimination of 47 Hz noise in the signal of the ECG. These results also show the accuracy of the design technique and provide an easy model to filter out noise in the ECG signal.


2019 ◽  
Vol 34 (4) ◽  
pp. 3958-3972 ◽  
Author(s):  
Enrique Rodriguez-Diaz ◽  
Francisco D. Freijedo ◽  
Juan C. Vasquez ◽  
Josep M. Guerrero

2019 ◽  
Vol 2019 (11) ◽  
pp. 8236-8244
Author(s):  
Cheng Zhong ◽  
Qiang Chen ◽  
Zhou Jing

Sign in / Sign up

Export Citation Format

Share Document