digital notch filter
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Sven P. Heinrich

Abstract Purpose Ideally, the multifocal electroretinogram (mfERG) is recorded without noticeable intrusion of mains interference. However, sometimes contamination is difficult to avoid. A post-processing digital notch filter can help to recover the retinal response even in severe cases of mains interference. While a digital filter can be designed to have little to no impact on peak times, filtering out mains interference also removes the retinal signal content of the same frequency, which may result in a change of amplitude. The present study addressed this issue in the standard first order kernel mfERG. Methods In 24 recordings from routine exams with no perceivable mains interference, the effects of 50-Hz and 60-Hz non-causal digital notch filters on amplitude and peak time were assessed. Furthermore, the effect of filtering on contaminated traces was demonstrated and simulated mains interference was used to provide an example of nonlinear superposition of retinal signal and mains interference. Results mfERG amplitudes were reduced by 0%–15% (median 6%) with the 50-Hz filter and remained virtually unaffected with the 60-Hz filter. Simulations illustrate that spurious high-frequency components can occur in the filtered signal if a strongly contaminated signal is clipped due to a limited input range of the analog-to-digital converter. Conclusion The application of a 50-Hz digital notch filter to mfERG traces causes a mild amplitude reduction which will not normally affect the clinical interpretation of the data. The situation is even more favorable with a 60-Hz digital notch filter. Caution is necessary if the assumption of linear additivity of retinal signal and mains interference is violated.


Author(s):  
Rahmad Hidayat ◽  
Ninik Sri Lestari ◽  
Herawati Herawati ◽  
Givy Devira Ramady ◽  
Sudarmanto Sudarmanto ◽  
...  

An electrocardiogram (ECG) is a means of measuring and monitoring important signals from heart activity. One of the major biomedical signal issues such as ECG is the issue of separating the desired signal from noise or interference. Different kinds of digital filters are used to distinguish the signal components from the unwanted frequency range to the ECG signal. To address the question of noise to the ECG signal, in this paper the digital notch filter IIR 47 Hz is designed and simulated to demonstrate the elimination of 47 Hz noise to obtain an accurate ECG signal. The full architecture of the structure and coefficient of the IIR notch filter was carried out using the FDA Tool. Then the model is finished with the help of Simulink and the MATLAB script was to filter out the 47 Hz noise from the signal of ECG. For this purpose, the normalized least mean square (NLMS) algorithm was used. The results indicate that before being filtered and after being filtered it clearly shows the elimination of 47 Hz noise in the signal of the ECG. These results also show the accuracy of the design technique and provide an easy model to filter out noise in the ECG signal.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Charn Loong Ng ◽  
Mamun Bin Ibne Reaz ◽  
Maria Liz Crespo ◽  
Andres Cicuttin ◽  
Muhammad Enamul Hoque Chowdhury

Abstract A capacitive electromyography (cEMG) biomedical sensor measures the EMG signal from human body through capacitive coupling methodology. It has the flexibility to be insulated by different types of materials. Each type of insulator will yield a unique skin–electrode capacitance which determine the performance of a cEMG biomedical sensor. Most of the insulator being explored are solid and non-breathable which cause perspiration in a long-term EMG measurement process. This research aims to explore the porous medical bandages such as micropore, gauze, and crepe bandage to be used as an insulator of a cEMG biomedical sensor. These materials are breathable and hypoallergenic. Their unique properties and characteristics have been reviewed respectively. A 50 Hz digital notch filter was developed and implemented in the EMG measurement system design to further enhance the performance of these porous medical bandage insulated cEMG biomedical sensors. A series of experimental verifications such as noise floor characterization, EMG signals measurement, and performance correlation were done on all these sensors. The micropore insulated cEMG biomedical sensor yielded the lowest noise floor amplitude of 2.44 mV and achieved the highest correlation coefficient result in comparison with the EMG signals captured by the conventional wet contact electrode.


2020 ◽  
Vol 14 (7) ◽  
pp. 440-447
Author(s):  
Abhay Sharma ◽  
Tarun Kumar Rawat ◽  
Anjali Agrawal

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1656 ◽  
Author(s):  
Tao ◽  
Zhou ◽  
Zhang ◽  
Zheng

The resonance problem of multi-paralleled grid-connected inverters with inductance-capacitance-inductance (LCL) filters is a core matter which bothers the safety and stability operation of new energy distribution networks. Based on the impedance model of the paralleled system of two inverters, the influence of inverters on grid-connected current was analyzed through the superposition principle, and the grid-connected current was decomposed. The resonant mechanism generated by interactive current and the common current was studied, and the resonance frequency characteristics were compared and analyzed by a paralleled system using the same and differently rated power inverters. Based on the resonance frequency generated by interactive current, a digital notch filter was introduced into the traditional capacitance current active damping control scheme, which realized the non-static control of base wave signal and satisfied the standard of multi-paralleled grid-connected inverters with LCL filters. Finally, simulation results verified the correctness and validity of the proposed strategy.


2016 ◽  
Vol 64 (6) ◽  
pp. 2264-2288 ◽  
Author(s):  
Shuang-Chao Ge ◽  
Ming Deng ◽  
Kai Chen ◽  
Bin Li ◽  
Yuan Li

Sign in / Sign up

Export Citation Format

Share Document