A parabolic current control based digital current control strategy for high switching frequency voltage source inverters

Author(s):  
Lanhua Zhang ◽  
Rachael Born ◽  
Xiaonan Zhao ◽  
Jih-Sheng Lai ◽  
Hongbo Ma
Author(s):  
Sinu KJ ◽  
G. Ranganathan

<p>Generally induction motor drives posses higher harmonic contents in line voltage and current due to high switching frequency used in inverters. Conventional induction motor drives employ two level voltage source inverters which has THD in level of 50%. This paper presents a switched z-source multilevel inverter which has voltage boosting capability and has lesser THD level in comparison with conventional two level voltage source inverters. This drive is fed from a photo voltaic source because of its voltage boosting capability. A single phase five level switched z-source inverter is initially designed and considered as single cell and three such cells are created for powering three phase induction motor. The proposed three cell PV source switched z-source multilevel inverter for three phase induction motor is simulated in MATLAB/Simulink software to verify merits of proposed IM drive</p>


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1074 ◽  
Author(s):  
Eduardo Zafra ◽  
Sergio Vazquez ◽  
Hipolito Guzman Miranda ◽  
Juan A. Sanchez ◽  
Abraham Marquez ◽  
...  

This work describes an efficient implementation in terms of computation time and resource usage in a Field-Programmable System-On-Chip (FPSoC) of a Finite Control Set Model Predictive Control (FCS-MPC) algorithm. As an example, the FCS-MPC implementation is used for the current reference tracking of a two-level three-phase power converter. The proposed solution is an enabler for using both complex control algorithms and digital controllers for high switching frequency semiconductor technologies. An original HW/SW (hardware and software) system architecture for an FPSoC is designed to take advantage of a modern operating system, while removing time uncertainty in real-time software tasks, and exploiting dedicated FPGA fabric for the most complex computations. In addition, two different architectures for the FPGA-implemented functionality are proposed and compared in order to study the area-speed trade-off. Experimental results show the feasibility of the proposed implementation, which achieves a speed hundreds of times faster than the conventional Digital Signal Processor (DSP)-based control platform.


Sign in / Sign up

Export Citation Format

Share Document