A dual-mode rectangular ring bandpass filter with transmission zeros on LTCC

Author(s):  
Hsin-Chia Lu ◽  
Chih-Chao Chang ◽  
Jia-Wei Chen
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Karthie S. ◽  
Zuvairiya Parveen J. ◽  
Yogeshwari D. ◽  
Venkadeshwari E.

Purpose The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a square patch resonator for C-band applications. Design/methodology/approach In the proposed design, the dual-mode response for the filter is realized with two transmission zeros (TZs) by the insertion of a perturbation element at the diagonal corner of the square patch resonator with orthogonal feed lines. Such TZs at the edges of the passband result in better selectivity for the proposed BPF. Moreover, the cross-loop and square ring slots are etched on a square patch resonator to obtain a miniaturized BPF. Findings The proposed dual-mode microstrip filter fabricated in RT/duroid 6010 substrate using PCB technology has a measured minimum insertion loss of 1.8 dB and return loss better than 24.5 dB with a fractional bandwidth (FBW) of 6.9%. A compact size of 7.35 × 7.35 mm2 is achieved for the slotted patch resonator-based dual-mode BPF at the center frequency of 4.76 GHz. As compared with the conventional square patch resonator, a size reduction of 61% is achieved with the proposed slotted design. The feasibility of the filter design is confirmed by the good agreement between the measured and simulated responses. The performance of the proposed filter structure is compared with other dual-mode filter works. Originality/value In the proposed work, a compact dual-mode BPF is reported with slotted structures. The conventional square patch resonator is deployed with cross-loop and square ring slots to design a dual-mode filter with a square perturbation element at its diagonal corner. The proposed filter exhibits compact size and favorable performance compared to other dual-mode filter works reported in literature. The aforementioned design of the dual-mode BPF at 4.76 GHz is suitable for applications in the lower part of the C-band.


Frequenz ◽  
2016 ◽  
Vol 70 (9-10) ◽  
Author(s):  
Chuanming Zhu ◽  
Jin Xu ◽  
Wei Kang ◽  
Zhenxin Hu ◽  
Wen Wu

AbstractIn this paper, a miniaturized dual-band bandpass filter (DB-BPF) using embedded dual-mode resonator (DMR) with controllable bandwidths is proposed. Two passbands are generated by two sets of resonators operating at two different frequencies. One set of resonators is utilized not only as the resonant elements that yield the lower passband, but also as the feeding structures with source-load coupling to excite the other to produce the upper passband. Sufficient degrees of freedom are achieved to control the center frequencies and bandwidths of two passbands. Moreover, multiple transmission zeros (TZs) are created to improve the passband selectivity of the filter. The design of the filter has been demonstrated by the measurement. The filter features not only miniaturized circuit sizes, low insertion loss, independently controllable central frequencies, but also controllable bandwidths and TZs.


2020 ◽  
Vol 71 (6) ◽  
pp. 433-435
Author(s):  
Shan Shan Gao ◽  
Jia-Lin Li ◽  
Zhe Lin Zhu ◽  
Jia Li Xu ◽  
Yong Xin Zhao

AbstractAn improved feedline configuration for dual-mode resonator filter is investigated in this paper. Based on the introduced topology, a dual-mode dual-band bandpass filter with center frequencies of 1.8 and 2.4 GHz is optimally designed, fabricated and tested. The introduced dual-band bandpass filter has simple structure and enables high selectivity to be realized due to two pairs of transmission zeros located near to the lower and upper passband, respectively. Both measured and simulated performances are presented with good consistency.


2008 ◽  
Vol 50 (3) ◽  
pp. 741-744 ◽  
Author(s):  
Sean Wu ◽  
Min-Hang Weng ◽  
Shih-Bin Jhong ◽  
Maw-Shung Lee

Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 293-300
Author(s):  
Dinghong Jia ◽  
Jianqin Deng ◽  
Yangping Zhao ◽  
Ke Wu

Abstract This work presents an approach to developing dual-mode dual-band substrate integrated waveguide (SIW) bandpass filter based on multilayer process. TE102/TE201 and TE101/TE102 modes are used to feature the two passbands, respectively. To begin with, large range of band location ratios are decided by the effective dimension of the SIW resonator. With reference to the field distribution, independent coupling schemes of the dual-modes are then realized by slots or circular apertures etched on the middle metal layer. It allows to not only introduce a large design freedom of bandwidth but also keep compactness. Finally, source-load and mixed couplings are deployed to produce transmission zeros around the passband in providing a sharp selectivity in the two filters, respectively. The details to independently control the center frequencies and bandwidth of two passbands are also presented. A two-order double-layered and a triple-layered SIW dual-band bandpass filter are prototyped to evaluate the proposed design approach, respectively. Results show a good agreement between simulations and measurements. The proposed filter exhibits flexible design freedom, high selectivity as well as good out-of-band rejection.


2010 ◽  
Vol 53 (1) ◽  
pp. 108-111 ◽  
Author(s):  
Tae-Soon Yun ◽  
Sun-Kuk Noh ◽  
Hyung-Jong Kim ◽  
Euy-Kyo Oh ◽  
Hong-Min Son ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Zh. Yao ◽  
C. Wang ◽  
N. Y. Kim

A dual-mode broadband bandpass filter (BPF) with multiple controllable transmission-zeros using T-shaped stub-loaded resonators (TSSLRs) is presented. Due to the symmetrical plane, the odd-even-mode theory can be adopted to characterize the BPF. The proposed filter consists of a dual-mode TSSLR and two modified feed-lines, which introduce two capacitive and inductive source-load (S-L) couplings. Five controllable transmission zeros (TZs) can be achieved for the high selectivity and the wide stopband because of the tunable amount of coupling capacitance and inductance. The center frequency of the proposed BPF is 5.8 GHz, with a 3 dB fraction bandwidth of 8.9%. The measured insertion and return losses are 1.75 and 28.18 dB, respectively. A compact size and second harmonic frequency suppression can be obtained by the proposed BPF with S-L couplings.


2008 ◽  
Vol 50 (8) ◽  
pp. 2161-2163 ◽  
Author(s):  
Yan-Kuin Su ◽  
Jau-Rung Chen ◽  
Min-Hang Weng ◽  
Cheng-Yuan Hung

2017 ◽  
Vol 49 (8) ◽  
Author(s):  
Ching-Chien Cheng ◽  
Kong-Xin Cheng ◽  
Huang-Kuang Kung ◽  
Chin-Yu Wang ◽  
Yng-Huey Jeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document