Application of Multi-motor Synchronous Drive System Based on Fuzzy-PID Control on Fiber Spinning Production Line

Author(s):  
Guihong Feng ◽  
Shunzhi Li ◽  
Bingyi Zhang ◽  
You Zhang
2013 ◽  
Vol 819 ◽  
pp. 229-233
Author(s):  
Zhong Liu ◽  
Jia Chen ◽  
Kai Zhang

Proposition of a high-speed switching valve pilot control of two-cylinder two-way electro-hydraulic synchronous drive system, the establishment of a mathematical model of the system, and using fuzzy PID control strategy designed controller, at the same time building a electro-hydraulic synchronization system simulation model based on fuzzy PID controller . Simulation results show that ,when using the fuzzy PID control strategy, slave cylinder of the synchronization system follow the initiative cylinder movement well, the peak-to-average speed of the slave cylinder is 20.3mm / s. Fuzzy PID control process according to the operating conditions change error and error change, by which it has automatic adjustment of PID parameters of the synchronization system. Therefore, fuzzy PID control has better adaptive ability, and the synchronization error is 0.04 mm, achieving high synchronization accuracy. Verifying that high-speed switching valve pilot control of the synchronous drive system and its control strategy is feasible.


Author(s):  
Runqin He

Based on the previous research on the production line automation, this paper carries out further research and further design and development on the basis of the original production line automation equipment. In this paper, the overall design of the automatic production line is carried out, and the various systems in the automatic production line are optimized, and the backward instruments are eliminated, and then some more advanced and convenient instruments are applied. Then, the hardware and software of the automatic production line are studied respectively, and the human-computer interaction module and real-time main control circuit module are re developed, and the electric shaft is applied to the automatic production line. Finally, the fuzzy PID controller of the stepping motor is designed. The experiment shows that the fuzzy PID control scheme is better than the traditional PID control scheme. After the rationalization of the system, the quality robustness of proactive planning is improved obviously. Then, the temperature of motorized spindle was tested.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1051 ◽  
Author(s):  
Zhou ◽  
Chen ◽  
Zhou ◽  
Liu

Because the proportional–integral–derivative (PID) parameters selected by experience are random, the control effect of fuzzy PID cannot be optimized. In order to improve the accuracy and stability of robot motion control, an orthogonal-fuzzy PID intelligent control method is proposed. In this paper, the electric steering gear is used as the actuator, and the mathematical model of the servo motor joint drive system is established. The simulation analysis of the original control, PID control, fuzzy PID control, and orthogonal-fuzzy PID control of the manipulator joints in the Simulink software simulation environment and the motion control experiment of the manipulator show that using the orthogonal test method to adjust the PID parameters can quickly determine the appropriate PID parameters and greatly reduce the number of trials. The rise time, adjustment time, and overshoot of the system are significantly reduced by using fuzzy PID control, which can improve the adaptability of the system. By comparing and analyzing fuzzy PID and orthogonal-fuzzy PID control methods, it can be found that the system of orthogonal-fuzzy PID for optimal factor level combination (Kp = 0.1, Ki = 30 and Kd = 0.02) is the optimal system. The experiment results show that the orthogonal-fuzzy PID can further improve the accuracy of the system and reduce the oscillation process of the system near the steady state and make the motion more stable.


Sign in / Sign up

Export Citation Format

Share Document