Production Line Vacuum Robot Based on Image Processing and Fuzzy PID Control

Author(s):  
Qian Guo ◽  
Baocheng Yu
Author(s):  
Runqin He

Based on the previous research on the production line automation, this paper carries out further research and further design and development on the basis of the original production line automation equipment. In this paper, the overall design of the automatic production line is carried out, and the various systems in the automatic production line are optimized, and the backward instruments are eliminated, and then some more advanced and convenient instruments are applied. Then, the hardware and software of the automatic production line are studied respectively, and the human-computer interaction module and real-time main control circuit module are re developed, and the electric shaft is applied to the automatic production line. Finally, the fuzzy PID controller of the stepping motor is designed. The experiment shows that the fuzzy PID control scheme is better than the traditional PID control scheme. After the rationalization of the system, the quality robustness of proactive planning is improved obviously. Then, the temperature of motorized spindle was tested.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


2013 ◽  
Vol 846-847 ◽  
pp. 321-324 ◽  
Author(s):  
Le Peng Song ◽  
Hua Bin Wang

As liquid level cascade system has the character the issue of non-linearity ,time variability and the overshoot,tradition PID control can not meet the requirement of precise molding system. So devise a self-_ adaptive fuzzy PID control .A self-_ adaptive fuzzy PID control combined PID to control calculate way and faintness to control the advantage of method, this text permits water tank to carry on mathematics model to design the double permit a water tank liquid misty PID string class control system. Matlab/Simulink and fuzzy logic toolbox are simulated to the single loop PID control system,the cascade control system and the cascade control system based on fuzzy self-tuning PID were simulated with Simulink. The analysis and simulation results indicate that the character issue of non-linearity ,time variability and the overshoot of the liquid level cascade control system based on a self-_ adaptive fuzzy PID controller are superior to previous of two methods.


2017 ◽  
Author(s):  
Yifei Feng ◽  
Guoping Lu ◽  
Lulin Yue ◽  
Weifeng Jiang ◽  
Ye Zhang

Sign in / Sign up

Export Citation Format

Share Document