Blade Aerodynamic Design and Performance Evaluation of Certain 1.5MW Horizontal Shaft Wind Turbine

Author(s):  
Peiqing Liu ◽  
Wanli Zhao ◽  
Jianyong Zhu ◽  
Zhilong Huang
2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Amin A. Mohammed ◽  
Hassen M. Ouakad ◽  
Ahmet Z. Sahin ◽  
Haitham M. S. Bahaidarah

Momentum models or streamtube models represent one of the fundamental approaches in modeling the aerodynamics of straight bladed vertical axis wind turbine (SB-VAWT) of Darrieus type. They are based on momentum (actuator disk) theory and widely used in performance evaluation of VAWTs. In this short review, the authors have strived to compile the basic momentum models that have been widely assumed in the literature for design and performance estimation of SB-VAWTs of Darrieus type. A comprehensive demonstration of the formulation needed for the implantation of these models is also proposed. Three streamtube models are investigated in this paper, namely, the single streamtube (SST), the multiple streamtube (MST), and the double multiple streamtube (DMST) models. Each of these models has it merits and demerits which are also thoroughly discussed in this review.


Author(s):  
Nagi Buaossa ◽  
Moataz Aldricy ◽  
Khalid Ragab ◽  
Zakariya Rajab ◽  
Ahmed Tahir ◽  
...  

The consumption of electricity in urban as well as rural is increasing every day and became an essential commodity for household and industrial purposes. Unfortunately the availability of electrical energy in India is not sufficient to the required demand and it is essential to discover and generate energy from non-conventional sources with cheap cost. On the same time it is necessary to reduce the consumption of conventional sources and to save fuel. Among all the renewable resources, wind is one of the best resources available all the time at free of cost. Especially vertical axis wind turbines (VAWT) are self-starting, omni directional. They require no yaw mechanism to continuously orient towards the wind direction and provide a more reliable energy conversion technology, as compared to horizontal axis wind turbine. Particularly savonius vertical axis wind turbines (SVAWT) are suitable and practically possible at low or uncertain wind speed regimes. They can be fitted on rooftops and also suitable for the urban areas where electricity is not available properly. This project deals with the fabrication and performance evaluation of savonius vertical axis wind turbine using two blade rotor. The amount of power developed by the wind turbine is calculated under theoretical and practical conditions and aerodynamics coefficients are also estimated. And various design parameters of savonious rotor are identified and determined.


2011 ◽  
Vol 25 (8) ◽  
pp. 1995-2002 ◽  
Author(s):  
Bumsuk Kim ◽  
Woojune Kim ◽  
Sungyoul Bae ◽  
Jaehyung Park ◽  
Manneung Kim

Author(s):  
Emrah Kulunk ◽  
Nadir Yilmaz

In this paper, a design method based on blade element momentum (BEM) theory is explained for horizontal-axis wind turbine (HAWT) blades. The method is used to optimize the chord and twist distributions of the blades. Applying this method a 100kW HAWT rotor is designed. Also a computer program is written to estimate the aerodynamic performance of the existing HAWT blades and used for the performance analysis of the designed 100kW HAWT rotor.


Sign in / Sign up

Export Citation Format

Share Document