Vertical Axis Wind Turbine Aerodynamics: Summary and Review of Momentum Models

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Amin A. Mohammed ◽  
Hassen M. Ouakad ◽  
Ahmet Z. Sahin ◽  
Haitham M. S. Bahaidarah

Momentum models or streamtube models represent one of the fundamental approaches in modeling the aerodynamics of straight bladed vertical axis wind turbine (SB-VAWT) of Darrieus type. They are based on momentum (actuator disk) theory and widely used in performance evaluation of VAWTs. In this short review, the authors have strived to compile the basic momentum models that have been widely assumed in the literature for design and performance estimation of SB-VAWTs of Darrieus type. A comprehensive demonstration of the formulation needed for the implantation of these models is also proposed. Three streamtube models are investigated in this paper, namely, the single streamtube (SST), the multiple streamtube (MST), and the double multiple streamtube (DMST) models. Each of these models has it merits and demerits which are also thoroughly discussed in this review.

The consumption of electricity in urban as well as rural is increasing every day and became an essential commodity for household and industrial purposes. Unfortunately the availability of electrical energy in India is not sufficient to the required demand and it is essential to discover and generate energy from non-conventional sources with cheap cost. On the same time it is necessary to reduce the consumption of conventional sources and to save fuel. Among all the renewable resources, wind is one of the best resources available all the time at free of cost. Especially vertical axis wind turbines (VAWT) are self-starting, omni directional. They require no yaw mechanism to continuously orient towards the wind direction and provide a more reliable energy conversion technology, as compared to horizontal axis wind turbine. Particularly savonius vertical axis wind turbines (SVAWT) are suitable and practically possible at low or uncertain wind speed regimes. They can be fitted on rooftops and also suitable for the urban areas where electricity is not available properly. This project deals with the fabrication and performance evaluation of savonius vertical axis wind turbine using two blade rotor. The amount of power developed by the wind turbine is calculated under theoretical and practical conditions and aerodynamics coefficients are also estimated. And various design parameters of savonious rotor are identified and determined.


2018 ◽  
Vol 7 (4.13) ◽  
pp. 74 ◽  
Author(s):  
Muhd Khudri Johari ◽  
Muhammad Azim A Jalil ◽  
Mohammad Faizal Mohd Shariff

As the demand for green technology is rising rapidly worldwide, it is important that Malaysian researchers take advantage of Malaysia’s windy climates and areas to initiate more power generation projects using wind. The main objectives of this study are to build a functional wind turbine and to compare the performance of two types of design for wind turbine under different speeds and behaviours of the wind. A three-blade horizontal axis wind turbine (HAWT) and a Darrieus-type vertical axis wind turbine (VAWT) have been designed with CATIA software and constructed using a 3D-printing method. Both wind turbines have undergone series of tests before the voltage and current output from the wind turbines are collected. The result of the test is used to compare the performance of both wind turbines that will imply which design has the best efficiency and performance for Malaysia’s tropical climate. While HAWT can generate higher voltage (up to 8.99 V at one point), it decreases back to 0 V when the wind angle changes. VAWT, however, can generate lower voltage (1.4 V) but changes in the wind angle does not affect its voltage output at all. The analysis has proven that VAWT is significantly more efficient to be built and utilized for Malaysia’s tropical and windy climates. This is also an initiative project to gauge the possibility of building wind turbines, which could be built on the extensive and windy areas surrounding Malaysian airports.  


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Vincenzo Dossena ◽  
Giacomo Persico ◽  
Berardo Paradiso ◽  
Lorenzo Battisti ◽  
Sergio Dell'Anna ◽  
...  

This paper presents the results of a wide experimental study on an H-type vertical axis wind turbine (VAWT) carried out at the Politecnico di Milano. The experiments were carried out in a large-scale wind tunnel, where wind turbines for microgeneration can be tested in real-scale conditions. Integral torque and thrust measurements were performed, as well as detailed aerodynamic measurements to characterize the flow field generated by the turbine downstream of the rotor. The machine was tested in both a confined (closed chamber) and unconfined (open chamber) environment, to highlight the effect of wind tunnel blockage on the aerodynamics and performance of the VAWT under investigation. The experimental results, compared with the blockage correlations presently available, suggest that specific correction models should be developed for VAWTs. The experimental thrust and power curves of the turbine, derived from integral measurements, exhibit the expected trends with a peak power coefficient of about 0.28 at tip-speed ratio equal to 2.5. Flow measurements, performed in three conditions for tip speed ratio equal to 1.5, 2.5, and 3.5, show the fully three-dimensional character of the wake, especially in the tip region where a nonsymmetrical wake and tip vortex are found. The unsteady evolution of the velocity and turbulence fields further highlights the effect of aerodynamic loading on the wake unsteadiness, showing the time-dependent nature of the tip vortex and the onset of dynamic stall for tip speed ratio lower than 2.


Sign in / Sign up

Export Citation Format

Share Document