Integrated Electricity and Natural Gas Energy System Scheduling Model Considering Multi-Energy Storage Systems

Author(s):  
Xueting Zhou ◽  
Yu-Qing Bao ◽  
Pei-Pei Chen ◽  
Tongzhou Ji ◽  
Wenjuan Deng ◽  
...  
2020 ◽  
Vol 12 (12) ◽  
pp. 31-43
Author(s):  
Tatiana A. VASKOVSKAYA ◽  
◽  
Boris A. KLUS ◽  

The development of energy storage systems allows us to consider their usage for load profile leveling during operational planning on electricity markets. The paper proposes and analyses an application of an energy storage model to the electricity market in Russia with the focus on the day ahead market. We consider bidding, energy storage constraints for an optimal power flow problem, and locational marginal pricing. We show that the largest effect for the market and for the energy storage system would be gained by integration of the energy storage model into the market’s optimization models. The proposed theory has been tested on the optimal power flow model of the day ahead market in Russia of 10000-node Unified Energy System. It is shown that energy storage systems are in demand with a wide range of efficiencies and cycle costs.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2903 ◽  
Author(s):  
Liwei Ju ◽  
Peng Li ◽  
Qinliang Tan ◽  
Zhongfu Tan ◽  
GejiriFu De

To make full use of distributed energy resources to meet load demand, this study aggregated wind power plants (WPPs), photovoltaic power generation (PV), small hydropower stations (SHSs), energy storage systems (ESSs), conventional gas turbines (CGTs) and incentive-based demand responses (IBDRs) into a virtual power plant (VPP) with price-based demand response (PBDR). Firstly, a basic scheduling model for the VPP was proposed in this study with the objective of the maximum operation revenue. Secondly, a risk aversion model for the VPP was constructed based on the conditional value at risk (CVaR) method and robust optimization theory considering the operating risk from WPP and PV. Thirdly, a solution methodology was constructed and three cases were considered for comparative analyses. Finally, an independent micro-grid on an industrial park in East China was utilized for an example analysis. The results show the following: (1) the proposed risk aversion scheduling model could cope with the uncertainty risk via a reasonable confidence degree β and robust coefficient Γ. When Γ ≤ 0.85 or Γ ≥ 0.95, a small uncertainty brought great risk, indicating that the risk attitude of the decision maker will affect the scheduling scheme of the VPP, and the decision maker belongs to the risk extreme aversion type. When Γ ∈ (0.85, 0.95), the decision-making scheme was in a stable state, the growth of β lead to the increase of CVaR, but the magnitude was not large. When the prediction error e was higher, the value of CVaR increased more when Γ increased by the same magnitude, which indicates that a lower prediction accuracy will amplify the uncertainty risk. (2) when the capacity ratio of (WPP, PV): ESS was higher than 1.5:1 and the peak-to-valley price gap was higher than 3:1, the values of revenue, VaR, and CVaR changed slower, indicating that both ESS and PBDR can improve the operating revenue, but the capacity scale of ESS and the peak-valley price gap need to be set properly, considering both economic benefits and operating risks. Therefore, the proposed risk aversion model could maximize the utilization of clean energy to obtain higher economic benefits while rationally controlling risks and provide reliable decision support for developing optimal operation plans for the VPP.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
U. Pysmenna ◽  
I. Sotnyk ◽  
O. Kubatko ◽  
G. Trypolska ◽  
T. Kurbatova

development of energy storage systems. The current state of energy storage systems in Ukraine is studied. The capacity of the segment of energy storage systems in the energy market, due to the need to meet the requirements of the European Energy Community on the flexibility of the integrated energy system, renewable energy sources and the objective need to use such systems as system service providers. The sufficiency of market and state incentives for the broad application and development of energy storage technologies in the conditions of quasi-competitive and full-scale electricity market of Ukraine is determined, taking into account the perspective tendencies of energy development. The cost and benefit analysis of investment projects for installation and operation of energy storage systems for three most common and prospective types of applications for the Ukrainian electricity market: participation in the market of ancillary system services, participation in the balancing market and system constraints reduction (renewables) is conducted. The sensitivity of project indicators of these types of applications is analyzed depending on the number of parameters: variations in specific capital expenditures, green tariff rates, market prices "day ahead" and market conditions of system services. It is substantiated that in Ukraine the energy storage systems are the most promising as the providers of system services for primary regulation of frequency and power, a sufficient reserve of which is one of the conditions for integration of the Ukrainian power system into the European energy system ENTSO-E, ancillary services through auctions for the provision of primary regulation services with a long-term time horizon. Regarding the prospects for the development of decentralized energy system, it is proved that the development of decentralized storage systems consisting of industrial facilities, substations and other low-capacity energy facilities has great potential with reformatting the energy system architecture to "smart grid" standards to form fundamentally new economic incentives for the development of energy storage systems.


Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 15
Author(s):  
Viviane T. Nascimento ◽  
Patrícia Albuquerque Gimenes ◽  
Miguel E. Morales Udaeta ◽  
André L. Veiga Gimenes

The objective of this work is to develop a framework related to energy storage systems implementation. The work focuses on a Brazilian scenario and applies information regarding demographic changes, economic, governmental and energy resources studies to establish the opportunities and barriers for a battery deployment in the country. This information is classified into organization, technology, and standards fronts, enabling to schedule the human resources and deal with possible gaps. Besides this, the framework organizes the information to enable a constant review of work fronts and activities, as the implementation scenario changes, and new stakeholders are added. A use case regarding an implementation of a multisource energy system composed by different sources and a battery allows to verify the proposed framework viability. As a result, it is expected that the framework enables medium-sized energy consumers to implement a similar infrastructure, reducing risks and gaps and maximizing the opportunities regarding a battery deployment.


Energies ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 195 ◽  
Author(s):  
Hengrui Ma ◽  
Bo Wang ◽  
Wenzhong Gao ◽  
Dichen Liu ◽  
Yong Sun ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yin Aiwei ◽  
Xu Congwei ◽  
Ju Liwei

To reduce the influence of wind power random on system operation, energy storage systems (ESSs) and demand response (DR) are introduced to the traditional scheduling model of wind power and thermal power with carbon emission trading (CET). Firstly, a joint optimization scheduling model for wind power, thermal power, and ESSs is constructed. Secondly, DR and CET are integrated into the joint scheduling model. Finally, 10 thermal power units, a wind farm with 2800 MW of installed capacity, and3×80 MW ESSs are taken as the simulation system for verifying the proposed models. The results show backup service for integrating wind power into the grid is provided by ESSs based on their charge-discharge characteristics. However, system profit reduces due to ESSs’ high cost. Demand responses smooth the load curve, increase profit from power generation, and expand the wind power integration space. After introducing CET, the generation cost of thermal power units and the generation of wind power are both increased; however, the positive effect of DR on the system profit is also weakened. The simulation results reach the optimum when both DR and CET are introduced.


Sign in / Sign up

Export Citation Format

Share Document