Rectangular aperture radiating into a lossy medium-numerical and experimental results

2003 ◽  
Author(s):  
C. Sibbald ◽  
S. Stuchly ◽  
G. Costache
2015 ◽  
Vol 8 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Teng Li ◽  
Wenbin Dou

In this paper, a novel wideband right-angle transition between thin substrate integrated waveguide (SIW) and rectangular waveguide (RWG) based on multi-section structure operating at center frequency 31.5 GHz is presented. A multi-section SIW with a rectangular aperture etched on the broad wall and two stepped ridges embedded in the RWG flange are introduced to obtain a wide impedance matching. The simulations show that the bandwidth with return loss better than 20 dB is about 17 GHz. In order to verify our designs, two back-to-back transitions with different lengths are fabricated and measured. The experimental results agree well with simulations. The proposed component shows an insertion loss less than 0.44 dB and a return loss better than 14.5 dB over 12.15 GH, which corresponds to 38.57% bandwidth.


2018 ◽  
Vol 10 (9) ◽  
pp. 1065-1071 ◽  
Author(s):  
Hailong Yang ◽  
Xiaoli Xi ◽  
Hualong Hou ◽  
Yuchen Zhao ◽  
Yanning Yuan

AbstractA compact printed reconfigurable monopole antenna with switchable band-notches is designed and manufactured. The proposed antenna mainly consists of a disc-like radiator with two pairs of T-shaped strips protruded inside a rectangular aperture. Five PIN diode switches are employed to bridge or open the slots, which allow the antenna to be configured into three different structures functioning as an ultra-wideband (UWB) antenna, or an antenna with notched frequencies at WLAN or WiMAX band. Design and optimization of the antenna are done using CST Microwave Studio. After fabrication on an FR4 substrate with dimensions of 35 mm (width) × 41 mm (length) × 1.5 mm (thickness), numerical and experimental results of the proposed reconfigurable antenna are presented and discussed. The experimental results confirm the design as a good candidate for UWB applications.


1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.


Author(s):  
Y. Harada ◽  
T. Goto ◽  
H. Koike ◽  
T. Someya

Since phase contrasts of STEM images, that is, Fresnel diffraction fringes or lattice images, manifest themselves in field emission scanning microscopy, the mechanism for image formation in the STEM mode has been investigated and compared with that in CTEM mode, resulting in the theory of reciprocity. It reveals that contrast in STEM images exhibits the same properties as contrast in CTEM images. However, it appears that the validity of the reciprocity theory, especially on the details of phase contrast, has not yet been fully proven by the experiments. In this work, we shall investigate the phase contrast images obtained in both the STEM and CTEM modes of a field emission microscope (100kV), and evaluate the validity of the reciprocity theory by comparing the experimental results.


Author(s):  
A. Ourmazd ◽  
G.R. Booker ◽  
C.J. Humphreys

A (111) phosphorus-doped Si specimen, thinned to give a TEM foil of thickness ∼ 150nm, contained a dislocation network lying on the (111) plane. The dislocation lines were along the three <211> directions and their total Burgers vectors,ḇt, were of the type , each dislocation being of edge character. TEM examination under proper weak-beam conditions seemed initially to show the standard contrast behaviour for such dislocations, indicating some dislocation segments were undissociated (contrast A), while other segments were dissociated to give two Shockley partials separated by approximately 6nm (contrast B) . A more detailed examination, however, revealed that some segments exhibited a third and anomalous contrast behaviour (contrast C), interpreted here as being due to a new dissociation not previously reported. Experimental results obtained for a dislocation along [211] with for the six <220> type reflections using (g,5g) weak-beam conditions are summarised in the table below, together with the relevant values.


Author(s):  
Scott Lordi

Vicinal Si (001) surfaces are interesting because they are good substrates for the growth of III-V semiconductors. Spots in RHEED patterns from vicinal surfaces are split due to scattering from ordered step arrays and this splitting can be used to determine the misorientation angle, using kinematic arguments. Kinematic theory is generally regarded to be inadequate for the calculation of RHEED intensities; however, only a few dynamical RHEED simulations have been attempted for vicinal surfaces. The multislice formulation of Cowley and Moodie with a recently developed edge patching method was used to calculate RHEED patterns from vicinal Si (001) surfaces. The calculated patterns are qualitatively similar to published experimental results and the positions of the split spots quantitatively agree with kinematic calculations.RHEED patterns were calculated for unreconstructed (bulk terminated) Si (001) surfaces misoriented towards [110] ,with an energy of 15 keV, at an incident angle of 36.63 mrad ([004] bragg condition), and a beam azimuth of [110] (perpendicular to the step edges) and the incident beam pointed down the step staircase.


Sign in / Sign up

Export Citation Format

Share Document