Diagnostics of Gold Laser Plasmas

1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.

2020 ◽  
Vol 39 (5) ◽  
pp. 194-201
Author(s):  
Ł. Syrocki ◽  
K. Słabkowska ◽  
E. Węder ◽  
M. Polasik ◽  
J. Rzadkiewicz

AbstractIn order to allow the advanced interpretation of the X-ray spectra registered by the high-resolution crystal KX1 spectrometer on the JET with an ITER-like wall, especially to determine how the relative emission contributions of tungsten and molybdenum ions change during a JET discharge, the X-ray spectra have been carefully modeled over a narrow wavelength range. The simulations have been done in the framework of Collisional–Radiative model implemented in Flexible Atomic Code for an electron density (ne = 2.5 × 1019 m−3), and electron temperatures between Te = 3.0 keV and Te = 4.5 keV, typical for JET. Moreover, performed detailed analysis in the framework of the proposed procedure can be useful in determining temperature of a high temperature plasma generated in tokamaks.


2000 ◽  
Vol 61 (5) ◽  
pp. 5701-5709 ◽  
Author(s):  
D. Pacella ◽  
K. B. Fournier ◽  
M. Zerbini ◽  
M. Finkenthal ◽  
M. Mattioli ◽  
...  

2021 ◽  
pp. 1-15
Author(s):  
Dmitrii Andreevich Kim ◽  
Ilia Yurievich Vichev ◽  
Anna Dmitrievna Solomyannaya ◽  
Alexander Sergeevich Grushin

The THERMOS code was used to calculate the properties of dense photoionized aluminum plasma. The case is based on an experiment carried out at the LCLS, where an aluminum film was irradiated with intense X-ray radiation with a photon energy of 1650 eV using a free-electron laser. The evolution of the aluminum plasma was considered, the populations of states and the emission spectrum were calculated. The main attention was paid to the study of the effects associated with nonstationarity and ionization potentials depression due to high density using collisional-radiative model.


1988 ◽  
Vol 102 ◽  
pp. 195-198
Author(s):  
A. Sureau ◽  
H. Guennou ◽  
C. Möller

AbstractRelated to the investigations on XUV lasers, this work presents results obtained by a collisional radiative model previously used for Al10+and S13+. The interest of the heavier elements which are considered here (Ca, Ti, Cu) is manifold. In particular, the wavelengths of some transitions between the inverted–population levels are below the carbon absorption edge, which is suitable for organic material investigations. Our results give information about the population inversions which may be expected according to the density and temperature conditions of the plasma concerned. Comparisons with existing experimental results are discussed in the copper case.


1992 ◽  
Vol 10 (4) ◽  
pp. 793-799 ◽  
Author(s):  
C. A. Back ◽  
P. Renaudin ◽  
C. Chenais-Popovics ◽  
J. C. Gauthier

A study of the effects of photoionization of a laser-produced plasma has been carried out by modeling the fluorescence of resonance lines due to cascades. The photoionization source is the X-ray M-band emission of a laser-produced high-Z plasma and it perturbs a ground state He-like aluminum plasma. Simulations have been performed to study the conditions necessary to maximize the fluorescence and guide future experiments. A collisional-radiative model is used to determine the optimal temperature and density of the pumped plasma, while hydrodynamic models are used to produce realistic plasma gradients and explore the optimum time delay of the photopumping.


1992 ◽  
Vol 10 (4) ◽  
pp. 821-826 ◽  
Author(s):  
R. Kodama

Atomic processes in X-ray laser interaction plasmas are investigated by using a collisional-radiative model. Population inversions on free-bound transitions can be produced by photoionization above a threshold of incident X-ray laser intensity and lead to stimulated free-bound emission (SFBE). Free-bound lasers pumped by intense X-ray lasers are proposed and their feasibility is investigated simply considering X-ray laser interaction plasmas.


Atoms ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 49
Author(s):  
Adam R. Foster ◽  
Keri Heuer

The AtomDB project provides models of X-ray and extreme ultraviolet emitting astrophysical spectra for optically thin, hot plasma. We present the new software package, PyAtomDB, which now underpins the entire project, providing access to the underlying database, collisional radiative model calculations, and spectrum generation for a range of models. PyAtomDB is easily extensible, allowing users to build new tools and models for use in analysis packages such as XSPEC. We present two of these, the kappa and ACX models for non-Maxwellian and Charge-Exchange plasmas respectively. In addition, PyAtomDB allows for full open access to the apec code, which underlies all of the AtomDB spectra and has enabled the development of a module for estimating the sensitivity of emission lines and diagnostic line ratios to uncertainties in the underlying atomic data. We present these publicly available tools and results for several X-ray diagnostics of Fe L-shell ions and He-like ions as examples.


2000 ◽  
Vol 65 (1-3) ◽  
pp. 501-509 ◽  
Author(s):  
Akira Sasaki ◽  
Takayuki Utsumi ◽  
Kengo Moribayashi ◽  
Toshiki Tajima ◽  
Hiroshi Takuma

2004 ◽  
Vol 22 (3) ◽  
pp. 245-251 ◽  
Author(s):  
TAKAKO KATO ◽  
NORIMASA YAMAMOTO ◽  
FRANK B. ROSMEJ

X-ray spectra of H-like Mg ions produced in a laser plasma have been measured by space-resolved high-resolution spectroscopy. We identified satellite lines near Lyα lines, 2lnl′ − 1snl′ +hν forn= 2, 3, and 4. We construct a collisional radiative model including the doubly excited states for the intensity ratios of satellite lines. We use atomic data calculated by different methods for satellite lines and compare the results. We derive the electron temperature and density of the laser-produced plasma by a new technique using intensity ratios of only satellite lines. This technique is useful because the Lyα lines are often affected by opacity.


Sign in / Sign up

Export Citation Format

Share Document