electronic temperature
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 25)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giacomo Mazza ◽  
Marco Gandolfi ◽  
Massimo Capone ◽  
Francesco Banfi ◽  
Claudio Giannetti

AbstractUnderstanding the mechanism of heat transfer in nanoscale devices remains one of the greatest intellectual challenges in the field of thermal dynamics, by far the most relevant under an applicative standpoint. When thermal dynamics is confined to the nanoscale, the characteristic timescales become ultrafast, engendering the failure of the common description of energy propagation and paving the way to unconventional phenomena such as wave-like temperature propagation. Here, we explore layered strongly correlated materials as a platform to identify and control unconventional electronic heat transfer phenomena. We demonstrate that these systems can be tailored to sustain a wide spectrum of electronic heat transport regimes, ranging from ballistic, to hydrodynamic all the way to diffusive. Within the hydrodynamic regime, wave-like temperature oscillations are predicted up to room temperature. The interaction strength can be exploited as a knob to control the dynamics of temperature waves as well as the onset of different thermal transport regimes.


Author(s):  
Sergey A. Shteingolts ◽  
Julia K. Voronina ◽  
Liliya F. Saifina ◽  
Marina M. Shulaeva ◽  
Vyacheslav E. Semenov ◽  
...  

The crystal and electronic structure of an isocyanuric acid derivative was studied by high-resolution single-crystal X-ray diffraction within the Hansen–Coppens multipole formalism. The observed deformation electron density shows signs of thermal smearing. The experimental picture meaningfully assigned to the consequences of unmodelled anharmonic atomic motion. Straightforward simultaneous refinement of all parameters, including Gram–Charlier coefficients, resulted in more significant distortion of apparent static electron density, even though the residual density became significantly flatter and more featureless. Further, the method of transferring multipole parameters from the model refined against theoretical structure factors as an initial guess was employed, followed by the subsequent block refinement of Gram–Charlier coefficients and the other parameters. This procedure allowed us to appropriately distinguish static electron density from the contaminant smearing effects of insufficiently accounted atomic motion. In particular, some covalent bonds and the weak π...π interaction between isocyanurate moieties were studied via the mutual penetration of atomic-like kinetic and electrostatic potential φ-basins with complementary atomic ρ-basins. Further, local electronic temperature was applied as an advanced descriptor for both covalent bonds and noncovalent interactions. Total probability density function (PDF) of nuclear displacement showed virtually no negative regions close to and around the atomic nuclei. The distribution of anharmonic PDF to a certain extent matched the residual electron density from the multipole model before anharmonic refinement. No signs of disordering of the sulfonyl group hidden in the modelled anharmonic motion were found in the PDF.


Nano Letters ◽  
2021 ◽  
Author(s):  
Alberto Martín-Jiménez ◽  
Koen Lauwaet ◽  
Óscar Jover ◽  
Daniel Granados ◽  
Andrés Arnau ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Maklar ◽  
Y. W. Windsor ◽  
C. W. Nicholson ◽  
M. Puppin ◽  
P. Walmsley ◽  
...  

AbstractThe interaction of many-body systems with intense light pulses may lead to novel emergent phenomena far from equilibrium. Recent discoveries, such as the optical enhancement of the critical temperature in certain superconductors and the photo-stabilization of hidden phases, have turned this field into an important research frontier. Here, we demonstrate nonthermal charge-density-wave (CDW) order at electronic temperatures far greater than the thermodynamic transition temperature. Using time- and angle-resolved photoemission spectroscopy and time-resolved X-ray diffraction, we investigate the electronic and structural order parameters of an ultrafast photoinduced CDW-to-metal transition. Tracking the dynamical CDW recovery as a function of electronic temperature reveals a behaviour markedly different from equilibrium, which we attribute to the suppression of lattice fluctuations in the transient nonthermal phonon distribution. A complete description of the system’s coherent and incoherent order-parameter dynamics is given by a time-dependent Ginzburg-Landau framework, providing access to the transient potential energy surfaces.


2021 ◽  
Vol 1 (5 (109)) ◽  
pp. 37-52
Author(s):  
Kostyantyn Kulikov ◽  
Vladimir Moskaliuk ◽  
Vladimir Timofeyev

This paper proposes a method of modeling the dynamic properties of multi-valley semiconductors. The model is applied to the relevant materials GaN, AlN, and InN, which are now known by the general name of III-nitrides. The method is distinguished by economical use of computational resources without significant loss of accuracy and the possibility of application for both dynamic time-dependent tasks and the fields variable in space. The proposed approach is based on solving a system of differential equations, which are known as relaxation ones, and derived from the Boltzmann kinetic equation in the approximation of relaxation time by the function of distribution over k-space. Unlike the conventional system of equations for the concentration of carriers, their pulse and energy, we have used, instead of the energy relaxation equation, an equation of electronic temperature as a measure of the energy of the chaotic motion only. Relaxation times are defined not as integral values from the static characteristics of the material but the averaging of quantum-mechanic speeds for certain types of scattering is used. Averaging was carried out according to the Maxwellian distribution function in the approximation of electronic temperature, as a result of which various mechanisms of dispersion of carriers are taken into consideration through specific relaxation times. The system of equations includes equations in partial derivatives from time and coordinates, which makes it possible to investigate the pulse properties of the examined materials. In particular, the dynamic effect of the "overshoot" in drift velocity and a spatial "ballistic transport" of carriers. The use of Fourier transforms of pulse dependence of the drift carrier velocity to calculate maximum conductivity frequencies is considered. It has been shown that the limit frequencies are hundreds of gigahertz and, for aluminum nitride, exceed a thousand gigahertz


2021 ◽  
Author(s):  
Giacomo Mazza ◽  
Marco Gandolfi ◽  
Massimo Capone ◽  
Francesco Banfi ◽  
Claudio Giannetti

Abstract We explore layered strongly correlated materials as a platform to identify and control unconventional heat transfer phenomena. We demonstrate that these systems can be tailored to sustain a wide spectrum of heat transport regimes, ranging from ballistic, to hydrodynamic all the way to diffusive. Within the hydrodynamic regime, wave-like temperature oscillations are predicted up to room temperature. Temperature waves have a purely electronic origin, stemming from the existence of two components in the electronic system, each one thermalized at different temperatures. The interaction strength can be exploited as a knob to control the dynamics of temperature waves as well as the onset of different thermal transport regimes. The present results pave the way to transition-metal oxide heterostructures as building blocks for nanodevices exploiting the wave-like nature of heat transfer on the picosecond time scale.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
Muhammad Shaukat Khan ◽  
Hunain Farooq ◽  
Christopher Wittmund ◽  
Stephen Klimke ◽  
Roland Lachmayer ◽  
...  

We report on a polymer-waveguide-based temperature sensing system relying on switchable molecular complexes. The polymer waveguide cladding is fabricated using a maskless lithographic optical system and replicated onto polymer material (i.e., PMMA) using a hot embossing device. An iron-amino-triazole molecular complex material (i.e., [Fe(Htrz)2.85(NH2-trz)0.15](ClO4)2) is used to sense changes in ambient temperature. For this purpose, the core of the waveguide is filled with a mixture of core material (NOA68), and the molecular complex using doctor blading and UV curing is applied for solidification. The absorption spectrum of the molecular complex in the UV/VIS light range features two prominent absorption bands in the low-spin state. As temperature approaches room temperature, a spin-crossover transition occurs, and the molecular complex changes its color (i.e. spectral properties) from violet-pink to white. The measurement of the optical power transmitted through the waveguide as a function of temperature exhibits a memory effect with a hysteresis width of approx. 12 °C and sensitivity of 0.08 mW/°C. This enables optical rather than electronic temperature detection in environments where electromagnetic interference might influence the measurements.


2021 ◽  
Vol 78 (2) ◽  
pp. 164-168
Author(s):  
Minky Seo ◽  
Do-Hoon Kim ◽  
Jae-Hyun Lee ◽  
Seok-Kyun Son

Author(s):  
Marco Franco-Perez

We developed a numerical procedure to compute the electronic temperature and the effective (local) chemical potential undergone by electrons belonging to a particular molecular species. Our strategy relies on considering...


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1836 ◽  
Author(s):  
Evgeny L. Gurevich ◽  
Yoann Levy ◽  
Nadezhda M. Bulgakova

Two different scenarios are usually invoked in the formation of femtosecond Laser-Induced Periodic Surface Structures (LIPSS), either “self-organization” mechanisms or a purely “plasmonic” approach. In this paper, a three-step model of formation of single-laser-shot LIPSS is summarized. It is based on the periodic perturbation of the electronic temperature followed by an amplification, for given spatial periods, of the modulation in the lattice temperature and a final possible relocation by hydrodynamic instabilities. An analytical theory of the evolution of the temperature inhomogeneities is reported and supported by numerical calculations on the examples of three different metals: Al, Au, and Mo. The criteria of the possibility of hydrodynamic instabilities are also discussed.


Sign in / Sign up

Export Citation Format

Share Document