2018 ◽  
Vol 2 (1) ◽  
pp. 30-37
Author(s):  
V. N. Tyapkin ◽  
◽  
V. N. Ratushnyak ◽  
D. D. Dmitriev ◽  
A. B. Gladyshev ◽  
...  

Space-time signal processing in adaptive electronic systems, including navigation, remains the subject of intensive research, as it allows to improve the efficiency of receiving useful signals under the influence of natural or intentional interference. The bibliography on this subject is very extensive and includes a large number of articles of scientific and applied nature, dissertations, monographs, patent materials. Much of this work has references to monographs by R. Monzingo and B. Widrow, which set out the basic principles, criteria and algorithms of spatial-temporal signal processing. To date, the development of space-time signal processing is largely constrained by the imperfection of the element base. The use of modern navigation equipment consumers high-speed signal processors that implement advanced methods and algorithms of digital signal processing, provides the ability of digital methods to form the desired beam pattern of the antenna system and to adjust the frequency characteristics of the reception channels, to implement complex algorithms for optimal processing of useful signals, operative to control the main operation modes of equipment. One of the most important applications of space-time signal processing is noise suppression, and its effectiveness depends on the degree of inter-channel correlation of these signals received by antenna elements of the adaptive antenna array. To maximize the coefficient of interference suppression required the adoption of measures on alignment of frequency and phase characteristics of the receiving circuits, and high precision computation of weighting coefficients. The article considers the questions of spatial filtering of the interference when adaptive interference compensator adjusted frequency characteristics of the receiving channels, and means of satellite navigation. Gradient algorithm of spatial compensation of noise, and also influence of adaptive correction of frequency characteristics of receiving channels on quality of suppression of noise is presented. The formation of a directional diagram of a multi-element adaptive antenna array with spatial noise suppression is demonstrated by modeling in the Matlab environment.


2001 ◽  
Vol 9 (ASAT Conference, 8-10 May 2001) ◽  
pp. 1-18
Author(s):  
SOLEIT* A. ◽  
ALLAM M. ◽  
EL-BARBARY A. ◽  
HENEIDI Z.

Author(s):  
M. Martinez-Ramon ◽  
A. Navia-Vazquez ◽  
C.G. Christodoulou ◽  
A.R. Figueiras-Vidal

2011 ◽  
Vol 179-180 ◽  
pp. 1342-1345
Author(s):  
Ping Chuan Zhang ◽  
Li Min Hou ◽  
Bu Yin Li

Passive radar based on GSM is a hot research field of new illuminators passive radars, and the wave arrival direction estimation is the key problem for detecting target. This paper designed adaptive antenna array for the GSM passive radar system, and give the complete Matlab simulation to verify the execution of the schedule, meanwhile, the result shows that the MUSIC algorithms is high accurate in the wave arrival direction compared with the Capon. All of this made a useful contribution to the research and application of the GSM-based passive radar.


2020 ◽  
pp. 64-76
Author(s):  
V.V. Skachkov ◽  

The problem of image signal processing in the information system with adaptive antenna array based on the inversion of sample estimates of correlation matrix of observations is considered. The example of the maximum signal-to-noise ratio criterion shows the problem, inherent in classical methods of finding the optimal weight vector under a priori uncertainty conditions when detecting correlated image signals. It has been concluded that the dependence of these methods on the inverse of estimation of the correlation matrix of observations leads to the impossibility of separating correlated image signals. As a consequence, the use of classical methods of finding the optimal weight vector in the information system with adaptive antenna array is effective only in the case of image restoration from a single signal source, with the signal received on the set of independent jamming background. A novel method, invariant to the correlation of image signals, has been developed for finding the optimal weight vector without the usage of correlation matrix of observations. An image restoration algorithm invariant to correlation of image signals in the information system with adaptive antenna array is proposed. Statistical models have been constructed for the classical method based on the criterion of maximum signal-to-noise ratio and invariant to correlation method of image restoration in following cases: a single source against the jamming background of two independent sources; two independent sources against the jamming background. Simulation results in the information system with adaptive antenna array are presented, showing to visually assess efficiency of proposed methods of image signal restoration using optimal weight vector. Detailed analysis of the results obtained is carried out.


Sign in / Sign up

Export Citation Format

Share Document