scholarly journals Increase of noise suppression efficiency due to correction of frequency characteristics of receiving channels in the navigation equipment of consumers

2018 ◽  
Vol 2 (1) ◽  
pp. 30-37
Author(s):  
V. N. Tyapkin ◽  
◽  
V. N. Ratushnyak ◽  
D. D. Dmitriev ◽  
A. B. Gladyshev ◽  
...  

Space-time signal processing in adaptive electronic systems, including navigation, remains the subject of intensive research, as it allows to improve the efficiency of receiving useful signals under the influence of natural or intentional interference. The bibliography on this subject is very extensive and includes a large number of articles of scientific and applied nature, dissertations, monographs, patent materials. Much of this work has references to monographs by R. Monzingo and B. Widrow, which set out the basic principles, criteria and algorithms of spatial-temporal signal processing. To date, the development of space-time signal processing is largely constrained by the imperfection of the element base. The use of modern navigation equipment consumers high-speed signal processors that implement advanced methods and algorithms of digital signal processing, provides the ability of digital methods to form the desired beam pattern of the antenna system and to adjust the frequency characteristics of the reception channels, to implement complex algorithms for optimal processing of useful signals, operative to control the main operation modes of equipment. One of the most important applications of space-time signal processing is noise suppression, and its effectiveness depends on the degree of inter-channel correlation of these signals received by antenna elements of the adaptive antenna array. To maximize the coefficient of interference suppression required the adoption of measures on alignment of frequency and phase characteristics of the receiving circuits, and high precision computation of weighting coefficients. The article considers the questions of spatial filtering of the interference when adaptive interference compensator adjusted frequency characteristics of the receiving channels, and means of satellite navigation. Gradient algorithm of spatial compensation of noise, and also influence of adaptive correction of frequency characteristics of receiving channels on quality of suppression of noise is presented. The formation of a directional diagram of a multi-element adaptive antenna array with spatial noise suppression is demonstrated by modeling in the Matlab environment.

2001 ◽  
Vol 9 (ASAT Conference, 8-10 May 2001) ◽  
pp. 1-18
Author(s):  
SOLEIT* A. ◽  
ALLAM M. ◽  
EL-BARBARY A. ◽  
HENEIDI Z.

Author(s):  
M. Martinez-Ramon ◽  
A. Navia-Vazquez ◽  
C.G. Christodoulou ◽  
A.R. Figueiras-Vidal

2011 ◽  
Vol 179-180 ◽  
pp. 1342-1345
Author(s):  
Ping Chuan Zhang ◽  
Li Min Hou ◽  
Bu Yin Li

Passive radar based on GSM is a hot research field of new illuminators passive radars, and the wave arrival direction estimation is the key problem for detecting target. This paper designed adaptive antenna array for the GSM passive radar system, and give the complete Matlab simulation to verify the execution of the schedule, meanwhile, the result shows that the MUSIC algorithms is high accurate in the wave arrival direction compared with the Capon. All of this made a useful contribution to the research and application of the GSM-based passive radar.


Sign in / Sign up

Export Citation Format

Share Document