Global design optimization of complex electromagnetic devices via efficient frequency response interpolations

Author(s):  
Y. El-Kahlout ◽  
G. Kiziltas
2021 ◽  
Vol 11 (4) ◽  
pp. 1627
Author(s):  
Yanbin Li ◽  
Gang Lei ◽  
Gerd Bramerdorfer ◽  
Sheng Peng ◽  
Xiaodong Sun ◽  
...  

This paper reviews the recent developments of design optimization methods for electromagnetic devices, with a focus on machine learning methods. First, the recent advances in multi-objective, multidisciplinary, multilevel, topology, fuzzy, and robust design optimization of electromagnetic devices are overviewed. Second, a review is presented to the performance prediction and design optimization of electromagnetic devices based on the machine learning algorithms, including artificial neural network, support vector machine, extreme learning machine, random forest, and deep learning. Last, to meet modern requirements of high manufacturing/production quality and lifetime reliability, several promising topics, including the application of cloud services and digital twin, are discussed as future directions for design optimization of electromagnetic devices.


Author(s):  
Chihsiung Lo ◽  
Panos Y. Papalambros

Abstract A powerful idea for deterministic global optimization is the use of global feasible search, namely, algorithms that guarantee finding feasible solutions of nonconvex problems or prove that none exists. In this article, a set of conditions for global feasible search algorithms is established. The utility of these conditions is demonstrated on two algorithms that solve special problem classes globally. Also, a new model transformation is shown to convert a generalized polynomial problem into one of the special classes above. A flywheel design example illustrates the approach. A sequel article provides further computational details and design examples.


1994 ◽  
Vol 30 (5) ◽  
pp. 3633-3636 ◽  
Author(s):  
O.A. Mohammed ◽  
R. Merchant ◽  
F.G. Uler

1992 ◽  
Vol 28 (5) ◽  
pp. 2805-2807 ◽  
Author(s):  
O.A. Mohammed ◽  
D.C. Park ◽  
F.G. Uler ◽  
C. Ziqiang

2015 ◽  
Vol 727-728 ◽  
pp. 660-665
Author(s):  
Shun Hsyung Chang ◽  
Fu Tai Wang ◽  
Jiing Kae Wu ◽  
Sergey N. Shevtsov ◽  
Igor V. Zhilyaev ◽  
...  

The paper presents some results of multi-objective optimization for the multilayered membrane-type piezoceramic MEMS based transducers with perforated active PZT and intermediate diaphragms, covered by the protective plates, and a vacuum chamber. An influence of the protective plate elastic and viscous properties, the dimensions and the relative areas of the perforated holes on the sensitivity’s frequency response of the hydrophone was studied for the broadening and equalizes the operating frequency band. We optimize the key design’s parameters using the Pareto approach with the finite element (FE) model of coupled piezoelectric-acoustic problem for the hydrophone.


Sign in / Sign up

Export Citation Format

Share Document