Application of the Huygens absorbing boundary condition to wave-structure interaction problems

Author(s):  
Jean-Pierre Bérenger ◽  
F Costen
Author(s):  
Bulent Duz ◽  
Rene H. M. Huijsmans ◽  
Mart J. A. Borsboom ◽  
Peter R. Wellens ◽  
Arthur E. P. Veldman

For the design of offshore structures, an accurate assessment of the ability of the structure to survive in extreme sea conditions is of prime importance. Next to scaled model tests on the structure in waves, also CFD capabilities are at the disposal of the designer. However even with the fastest computers available, it is still a challenge to use CFD in the design stage because of the large computational resources they require. In this study we focus our attention on the implementation of an absorbing boundary condition (ABC) in a wave-structure interaction problem. Unlike the traditional approach where the boundaries are located far from the object to avoid reflection, we gradually locate them closer while at the same time observing the influence of the absorbing boundary condition on the solution. Numerical calculations are performed using the CFD simulation tool ComFLOW which is a volume-of-fluid (VOF) based Navier-Stokes solver. Comparisons with experimental results are also provided and the performance of the ABC is discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
S. L. Han ◽  
Takeshi Kinoshita

The determination of an external force is a very important task for the purpose of control, monitoring, and analysis of damages on structural system. This paper studies a stochastic inverse method that can be used for determining external forces acting on a nonlinear vibrating system. For the purpose of estimation, a stochastic inverse function is formulated to link an unknown external force to an observable quantity. The external force is then estimated from measurements of dynamic responses through the formulated stochastic inverse model. The applicability of the proposed method was verified with numerical examples and laboratory tests concerning the wave-structure interaction problem. The results showed that the proposed method is reliable to estimate the external force acting on a nonlinear system.


Sign in / Sign up

Export Citation Format

Share Document