A compact high-efficiency circularly polarized antenna with thick EBG cells and integrated power divider/phase shifter

Author(s):  
Mehdi Hosseini ◽  
David M. Klymyshyn
Author(s):  
Aparna B. Barbadekar ◽  
Pradeep M. Patil

Abstract The paper proposes a system consisting of novel programmable system on chip (PSoC)-controlled phase shifters which in turn guides the beam of an antenna array attached to it. Four antennae forming an array receive individual inputs from the programmable phase shifters (IC 2484). The input to the PSoC-based phase shifter is provided from an optimized 1:4 Wilkinson power divider. The antenna consists of an inverted L-shaped dipole on the front and two mirrored inverted L-shaped dipoles mounted on a rectangular conductive structure on the back which resonates in the ISM/Wi-Fi band (2.40–2.48 GHz). The power divider is designed to provide the feed to the phase shifter using a beamforming network while ensuring good isolation among the ports. The power divider has measured S11, S21, S31, S41, and S51 to be −14, −6.25, −6.31, −6.28, and −6.31 dB, respectively at a frequency of 2.45 GHz. The ingenious controller is designed in-house using a PSoC microcontroller to regulate the control voltage of individual phase shifter IC and generate progressive phase shifts. To validate the calibration of the in-house designed control circuit, the phased array is simulated using $s_p^2$ touchstone file of IC 2484. This designed control circuit exhibits low insertion loss close to −8.5 dB, voltage standing wave ratio of 1.58:1, and reflection coefficient (S11) is −14.36 dB at 2.45 GHz. Low insertion loss variations confirm that the phased-array antenna gives equal amplitude and phase. The beamforming radiation patterns for different scan angles (30, 60, and 90°) for experimental and simulated phased-array antenna are matched accurately showing the accuracy of the control circuit designed. The average experimental and simulated gain is 13.03 and 13.48 dBi respectively. The in-house designed controller overcomes the primary limitations associated with the present electromechanical phased array such as cost weight, size, power consumption, and complexity in design which limits the use of a phased array to military applications only. The current study with novel design and enhanced performance makes the system worthy of the practical use of phased-array antennas for common society at large.


2015 ◽  
Vol 91 (12) ◽  
Author(s):  
Shang-Chi Jiang ◽  
Xiang Xiong ◽  
Yuan-Sheng Hu ◽  
Sheng-Wei Jiang ◽  
Yu-Hui Hu ◽  
...  

2021 ◽  
Vol 119 (24) ◽  
pp. 241103
Author(s):  
Miao Wang ◽  
Yu Lin ◽  
Jue-Min Yi ◽  
De-Yao Li ◽  
Jian-Ping Liu ◽  
...  

2021 ◽  
Author(s):  
Xianjin Deng ◽  
Yunbo Rao ◽  
Kun Huang ◽  
Jie Zhou ◽  
Wei Su ◽  
...  

1973 ◽  
Vol 51 (23) ◽  
pp. 2495-2497
Author(s):  
C. K. Campbell

With the aid of a phasor diagram it is shown that the scalar effective permeability μe = (μ2 − K2)/μ of a parallel-plate longitudinally magnetized microwave ferrite phase shifter may be simply obtained in terms of four circularly polarized waves relating to the permeability tensor eigenvalues μ + K and μ − K.


2016 ◽  
Vol 13 (9) ◽  
pp. 20160181-20160181 ◽  
Author(s):  
Yihong Zhou ◽  
Haiyang Wang ◽  
Jiayin Li ◽  
Haiyan Jin

2021 ◽  
Vol 8 ◽  
pp. 4
Author(s):  
Peng Xu ◽  
Wei Xiang Jiang ◽  
Xiao Cai ◽  
Yue Gou ◽  
Tie Jun Cui

In this paper, we propose, design and fabricate a kind of ultrathin and high-efficiency circularly polarization converter based on artificially engineered surfaces in the transmission mode. The converter is composed of double-layer periodic surface structures with cross slots. The top and bottom layers are printed on both sides of the F4B substrate and connected by metallic via holes. The proposed converter can transform the right-handed circularly polarized incident electromagnetic (EM) wave to a left-handed circularly-polarized one with near-unity efficiency in the transmission mode, or vice versa. We explain the conversion mechanism based on numerical simulations and equivalent circuit (EC) theory. The measured result has a good agreement with the simulated one in the working frequency band. Such ultrathin polarization converters can be used in wireless microwave communication, remote sensing, and EM imaging where circularly polarization diversity is needed.


Sign in / Sign up

Export Citation Format

Share Document