Optimal Placement of Piezoelectric Sensors and Actuators Pairs for Vibration Suppression

Author(s):  
Biswaranjan Swain ◽  
Nibedita Swain ◽  
Siddharth Sahany ◽  
Praveen Priyaranjan Nayak ◽  
Satyanarayan Bhuyan
Aerospace ◽  
2003 ◽  
Author(s):  
Mehrdad N. Ghasemi Nejhad ◽  
Richard Russ

This work presents manufacturing and testing of active composite panels (ACPs) with embedded piezoelectric sensors and actuators. The composite material employed here is a plain weave carbon/epoxy prepreg fabric with about 0.3 mm ply thickness. A cross-ply type stacking sequence is employed for the ACPs. The piezoelectric flexible patches employed here are Active Fiber Composites with 0.33 mm thickness. Composite cut-out layers are used to fill the space around the embedded piezo patches to minimize the problems associated with ply drops in composites. The piezoelectric patches were embedded inside the composite laminate. High-temperature wires were soldered to the piezo leads, insulated from the carbon substructure by high-temperature materials, and were taken out of the composite laminates employing both cut-hole and embedding techniques. The laminated ACPs were co-cured inside an autoclave employing the cure cycle recommended by the composite material supplier. The Curie temperature of the embedded piezo patches should be well above the curing temperature of the composite materials as was the case here. The manufactured ACPs were trimmed and then tested for their functionality. Vibration suppression as well as simultaneous vibration suppression and precision positioning tests, using Hybrid Adaptive Control techniques were successfully conducted on the manufactured ACP beams and plates and their functionality were demonstrated. The advantages and disadvantages of ACPs manufactured by taking the wires out employing cut-holes and embedding techniques, in terms of manufacturing and performance, are presented.


2003 ◽  
Vol 125 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Y. Y. Lee ◽  
J. Yao

An experimental study for the active vibration control of structures subject to external excitations using piezoelectric sensors and actuators is presented. A simply supported plate and a curved panel are used as the controlled structures in two experiments, respectively. The Independent Modal Space Control (IMSC) approach is employed for the controller design. In order to increase the adaptability, the time-domain modal identification technique is incorporated into the controller to real-time update the system parameters. The adaptive effectiveness of the time-domain modal identification technique is tested by fixing an additional mass on the simply supported plate to change its structural properties. The vibration suppression performances of the controller are 5.7 dB and 10.8 dB for the simply-supported plate with/without the mass subject to a chirp sine excitation, respectively. For the experiment of the curved panel subject to a sinusoidal excitation, the vibration attenuation of the control scheme is 5.0 dB even the control circuit is subject to some noise generated by electrical and magnetic interferences.


2008 ◽  
Vol 47-50 ◽  
pp. 29-32
Author(s):  
Chih Yu Hsu

A new configuration of smart structures which could be automatically adjusted according to changes of forcing frequencies is proposed for vibration suppression. The new configuration is a laminated beam-plate or wide beam composed of layers of piezoelectric sensors and actuators and Shape Memory Alloy (SMA) wires embedded in the middle plane of the laminated structure. The structural natural frequencies can be adjusted closely to the forcing frequencies by adjusting electric heating for controlling temperature of SMA. In each layer, the piezoelectric sensors and actuators whose electrode are trimmed to modal shapes in conjunction with proper control algorithm, to achieve expected control effects. The sensors and actuators are connected with each other if they have the same shapes and they are linked together by a controller to form a close loop feedback control. Using active control algorithm to control behavior of the piezoelectric material can suppress the structural vibration. Theoretical simulations are formulated and performed without physical experimentation for evaluating its feasibility. The Hamilton's principle is used to derive the governing equation and boundary conditions for the structure which is composed of PVDF and SMA materials. Modal analysis is used to obtain the result of dynamical response.


Sign in / Sign up

Export Citation Format

Share Document