OpenCL-based design pattern for line rate packet processing

Author(s):  
Jehandad Khan ◽  
Peter Athanas ◽  
Skip Booth ◽  
John Marshall
2012 ◽  
Vol 2 (2) ◽  
pp. 112-116
Author(s):  
Shikha Bhatia ◽  
Mr. Harshpreet Singh

With the mounting demand of web applications, a number of issues allied to its quality have came in existence. In the meadow of web applications, it is very thorny to develop high quality web applications. A design pattern is a general repeatable solution to a generally stirring problem in software design. It should be noted that design pattern is not a finished product that can be directly transformed into source code. Rather design pattern is a depiction or template that describes how to find solution of a problem that can be used in many different situations. Past research has shown that design patterns greatly improved the execution speed of a software application. Design pattern are classified as creational design patterns, structural design pattern, behavioral design pattern, etc. MVC design pattern is very productive for architecting interactive software systems and web applications. This design pattern is partition-independent, because it is expressed in terms of an interactive application running in a single address space. We will design and analyze an algorithm by using MVC approach to improve the performance of web based application. The objective of our study will be to reduce one of the major object oriented features i.e. coupling between model and view segments of web based application. The implementation for the same will be done in by using .NET framework.


2016 ◽  
Vol 51 (4) ◽  
pp. 67-81 ◽  
Author(s):  
Antoine Kaufmann ◽  
SImon Peter ◽  
Naveen Kr. Sharma ◽  
Thomas Anderson ◽  
Arvind Krishnamurthy

2016 ◽  
Vol 44 (2) ◽  
pp. 67-81 ◽  
Author(s):  
Antoine Kaufmann ◽  
SImon Peter ◽  
Naveen Kr. Sharma ◽  
Thomas Anderson ◽  
Arvind Krishnamurthy

2021 ◽  
Vol 13 (3) ◽  
pp. 78
Author(s):  
Chuanhong Li ◽  
Lei Song ◽  
Xuewen Zeng

The continuous increase in network traffic has sharply increased the demand for high-performance packet processing systems. For a high-performance packet processing system based on multi-core processors, the packet scheduling algorithm is critical because of the significant role it plays in load distribution, which is related to system throughput, attracting intensive research attention. However, it is not an easy task since the canonical flow-level packet scheduling algorithm is vulnerable to traffic locality, while the packet-level packet scheduling algorithm fails to maintain cache affinity. In this paper, we propose an adaptive throughput-first packet scheduling algorithm for DPDK-based packet processing systems. Combined with the feature of DPDK burst-oriented packet receiving and transmitting, we propose using Subflow as the scheduling unit and the adjustment unit making the proposed algorithm not only maintain the advantages of flow-level packet scheduling algorithms when the adjustment does not happen but also avoid packet loss as much as possible when the target core may be overloaded Experimental results show that the proposed method outperforms Round-Robin, HRW (High Random Weight), and CRC32 on system throughput and packet loss rate.


Sign in / Sign up

Export Citation Format

Share Document