High-speed packet processing by non-collision hash functions based on middle-point partition

2013 ◽  
Vol 32 (4) ◽  
pp. 999-1002
Author(s):  
Mo-hua ZHANG ◽  
Ge LI
2017 ◽  
Vol 7 (1.5) ◽  
pp. 230
Author(s):  
A. Murali ◽  
K Hari Kishore

Data manipulations are made with the use of communication and networking systems. But at the same time, data integrity is also a needed and important property that must be maintained in every data communicating systems. For this, the security levels are provided with cryptographic primitives like hash functions and block ciphers which are deployed into the systems. For efficient architectures, FPGA-based systems like AES-GCM and AEGIS-128 plays in the best part of the re-configurability, which supports the security services of such communication and networking systems. We possibly focus on the performance of the systems with the high security of the FPGA bit streams. GF (2128) multiplier is implemented for authentication tasks for high-speed targets. And also, the implementations were evaluated by using vertex 4.5 FPGA’s


2021 ◽  
Vol 38 (1-2) ◽  
pp. 1-45
Author(s):  
Georgios P. Katsikas ◽  
Tom Barbette ◽  
Dejan Kostić ◽  
JR. Gerald Q. Maguire ◽  
Rebecca Steinert

Deployment of 100Gigabit Ethernet (GbE) links challenges the packet processing limits of commodity hardware used for Network Functions Virtualization (NFV). Moreover, realizing chained network functions (i.e., service chains) necessitates the use of multiple CPU cores, or even multiple servers, to process packets from such high speed links. Our system Metron jointly exploits the underlying network and commodity servers’ resources: ( i ) to offload part of the packet processing logic to the network, ( ii )  by using smart tagging to setup and exploit the affinity of traffic classes, and ( iii )  by using tag-based hardware dispatching to carry out the remaining packet processing at the speed of the servers’ cores, with zero inter-core communication. Moreover, Metron transparently integrates, manages, and load balances proprietary “blackboxes” together with Metron service chains. Metron realizes stateful network functions at the speed of 100GbE network cards on a single server, while elastically and rapidly adapting to changing workload volumes. Our experiments demonstrate that Metron service chains can coexist with heterogeneous blackboxes, while still leveraging Metron’s accurate dispatching and load balancing. In summary, Metron has ( i )  2.75–8× better efficiency, up to ( ii )  4.7× lower latency, and ( iii )  7.8× higher throughput than OpenBox, a state-of-the-art NFV system.


2020 ◽  
Vol 10 (12) ◽  
pp. 4080 ◽  
Author(s):  
Mariano Lemus ◽  
Mariana F. Ramos ◽  
Preeti Yadav ◽  
Nuno A. Silva ◽  
Nelson J. Muga ◽  
...  

The oblivious transfer primitive is sufficient to implement secure multiparty computation. However, secure multiparty computation based on public-key cryptography is limited by the security and efficiency of the oblivious transfer implementation. We present a method to generate and distribute oblivious keys by exchanging qubits and by performing commitments using classical hash functions. With the presented hybrid approach of quantum and classical, we obtain a practical and high-speed oblivious transfer protocol. We analyse the security and efficiency features of the technique and conclude that it presents advantages in both areas when compared to public-key based techniques.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2563 ◽  
Author(s):  
Jaehyung Wee ◽  
Jin-Ghoo Choi ◽  
Wooguil Pak

Vehicle-to-Everything (V2X) requires high-speed communication and high-level security. However, as the number of connected devices increases exponentially, communication networks are suffering from huge traffic and various security issues. It is well known that performance and security of network equipment significantly depends on the packet classification algorithm because it is one of the most fundamental packet processing functions. Thus, the algorithm should run fast even with the huge set of packet processing rules. Unfortunately, previous packet classification algorithms have focused on the processing speed only, failing to be scalable with the rule-set size. In this paper, we propose a new packet classification approach balancing classification speed and scalability. It can be applied to most decision tree-based packet classification algorithms such as HyperCuts and EffiCuts. It determines partitioning fields considering the rule duplication explicitly, which makes the algorithm memory-effective. In addition, the proposed approach reduces the decision tree size substantially with the minimal sacrifice of classification performance. As a result, we can attain high-speed packet classification and scalability simultaneously, which is very essential for latest services such as V2X and Internet-of-Things (IoT).


2019 ◽  
Vol 149 ◽  
pp. 187-199 ◽  
Author(s):  
Leonardo Linguaglossa ◽  
Dario Rossi ◽  
Salvatore Pontarelli ◽  
Dave Barach ◽  
Damjan Marjon ◽  
...  

2007 ◽  
Vol 31 (3) ◽  
pp. 188-199 ◽  
Author(s):  
K. Vlachos ◽  
T. Orphanoudakis ◽  
Y. Papaeftathiou ◽  
N. Nikolaou ◽  
D. Pnevmatikatos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document