VLSI processor design of real-time data compression for high-resolution imaging radar

Author(s):  
Wai-Chi Fang
Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhicheng Xiao ◽  
Andrea Alù

Abstract Fano resonances feature an asymmetric lineshape with controllable linewidth, stemming from the interplay between bright and dark resonances. They provide efficient opportunities to shape the scattering lineshape, but they usually lack flexibility and tunability and are hindered by loss in passive systems. Here, we explore a hybrid parity-time (PT) and anti-parity-time (APT) symmetric system supporting unitary scattering features with highly tunable Fano resonances. The PT-APT-symmetric system can be envisioned in nanophotonic and microwave circuit implementations, allowing for real-time control of the scattering lineshape and its underlying singularities. Our study shows the opportunities enabled by non-Hermitian platforms to control scattering lineshapes for a plethora of photonic, electronic, and quantum systems, with potential for high-resolution imaging, switching, sensing, and multiplexing.


2014 ◽  
Vol 519-520 ◽  
pp. 70-73 ◽  
Author(s):  
Jing Bai ◽  
Tie Cheng Pu

Aiming at storing and transmitting the real time data of energy management system in the industrial production, an online data compression technique is proposed. Firstly, the auto regression model of a group of sequence is established. Secondly, the next sampled data can be predicted by the model. If the estimated error is in the allowable range, we save the parameters of model and the beginning data. Otherwise, we save the data and repeat the method from the next sampled data. At Last, the method is applied in electricity energy data compression of a beer production. The application result verifies the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document