Real Time High-Resolution Imaging of Porcine Endothelial Glycocalyx Shedding by Human Serum in an in Vitro Microfluidic Model of Pig-to-Human Xenotransplantation

2018 ◽  
Vol 102 ◽  
pp. S741
Author(s):  
Riccardo Sfriso ◽  
Robert Rieben
Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhicheng Xiao ◽  
Andrea Alù

Abstract Fano resonances feature an asymmetric lineshape with controllable linewidth, stemming from the interplay between bright and dark resonances. They provide efficient opportunities to shape the scattering lineshape, but they usually lack flexibility and tunability and are hindered by loss in passive systems. Here, we explore a hybrid parity-time (PT) and anti-parity-time (APT) symmetric system supporting unitary scattering features with highly tunable Fano resonances. The PT-APT-symmetric system can be envisioned in nanophotonic and microwave circuit implementations, allowing for real-time control of the scattering lineshape and its underlying singularities. Our study shows the opportunities enabled by non-Hermitian platforms to control scattering lineshapes for a plethora of photonic, electronic, and quantum systems, with potential for high-resolution imaging, switching, sensing, and multiplexing.


2021 ◽  
Author(s):  
Tadayoshi Aoyama ◽  
Sarau Takeno ◽  
Kazuki Hano ◽  
Masaki Takasu ◽  
Masaru Takeuchi ◽  
...  

2015 ◽  
Vol 53 (8) ◽  
pp. 2693-2696 ◽  
Author(s):  
Ramzi Ghodbane ◽  
Shady Asmar ◽  
Marlena Betzner ◽  
Marie Linet ◽  
Joseph Pierquin ◽  
...  

Culture remains the cornerstone of diagnosis for pulmonary tuberculosis, but the fastidiousness ofMycobacterium tuberculosismay delay culture-based diagnosis for weeks. We evaluated the performance of real-time high-resolution imaging for the rapid detection ofM. tuberculosiscolonies growing on a solid medium. A total of 50 clinical specimens, including 42 sputum specimens, 4 stool specimens, 2 bronchoalveolar lavage fluid specimens, and 2 bronchial aspirate fluid specimens were prospectively inoculated into (i) a commercially available Middlebrook broth and evaluated for mycobacterial growth indirectly detected by measuring oxygen consumption (standard protocol) and (ii) a home-made solid medium incubated in an incubator featuring real-time high-resolution imaging of colonies (real-time protocol). Isolates were identified by Ziehl-Neelsen staining and matrix-assisted laser desorption ionization–time of flight mass spectrometry. Use of the standard protocol yielded 14/50 (28%)M. tuberculosisisolates, which is not significantly different from the 13/50 (26%)M. tuberculosisisolates found using the real-time protocol (P= 1.00 by Fisher's exact test), and the contamination rate of 1/50 (2%) was not significantly different from the contamination rate of 2/50 (4%) using the real-time protocol (P= 1.00). The real-time imaging protocol showed a 4.4-fold reduction in time to detection, 82 ± 54 h versus 360 ± 142 h (P< 0.05). These preliminary data give the proof of concept that real-time high-resolution imaging ofM. tuberculosiscolonies is a new technology that shortens the time to growth detection and the laboratory diagnosis of pulmonary tuberculosis.


2022 ◽  
Vol 149 ◽  
pp. 106819
Author(s):  
Huazheng Wu ◽  
Xiangfeng Meng ◽  
Xiulun Yang ◽  
Xianye Li ◽  
Yongkai Yin

2020 ◽  
Vol 32 (21) ◽  
pp. 1397-1400
Author(s):  
Beichen Fan ◽  
Fangzheng Zhang ◽  
Cong Ma ◽  
Yue Yang ◽  
Shilong Pan ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mirela Balan ◽  
Marta Trusohamn ◽  
Frank Chenfei Ning ◽  
Stefan Jacob ◽  
Kristian Pietras ◽  
...  

Abstract Preclinical trials of cancer drugs in animal models are important for drug development. The Rip1Tag2 (RT2) transgenic mouse, a model of pancreatic neuroendocrine tumours (PNET), has provided immense knowledge about PNET biology, although tumour progression occurs in a location inaccessible for real-time monitoring. To overcome this hurdle we have developed a novel platform for intravital 3D imaging of RT2 tumours to facilitate real-time studies of cancer progression. Pre-oncogenic islets retrieved from RT2 mice were implanted into the anterior chamber of the eye (ACE) of host mice, where they engrafted on the iris, recruited blood vessels and showed continuous growth. Noninvasive confocal and two-photon laser-scanning microscopy through the transparent cornea facilitated high-resolution imaging of tumour growth and angiogenesis. RT2 tumours in the ACE expanded up to 8-fold in size and shared hallmarks with tumours developing in situ in the pancreas. Genetically encoded fluorescent reporters enabled high-resolution imaging of stromal cells and tumour cell migration. Sunitinib treatment impaired RT2 tumour angiogenesis and growth, while overexpression of the vascular endothelial growth factor (VEGF)-B increased tumour angiogenesis though tumour growth was impaired. In conclusion, we present a novel platform for intravital high-resolution and 3D imaging of PNET biology and cancer drug assessment.


2011 ◽  
Author(s):  
Lianjie Huang ◽  
Yassin Labyed ◽  
Francesco Simonetti ◽  
Michael Williamson ◽  
Robert Rosenberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document