microwave circuit
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 40)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Charles E. Free ◽  
Colin S. Aitchison

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhicheng Xiao ◽  
Andrea Alù

Abstract Fano resonances feature an asymmetric lineshape with controllable linewidth, stemming from the interplay between bright and dark resonances. They provide efficient opportunities to shape the scattering lineshape, but they usually lack flexibility and tunability and are hindered by loss in passive systems. Here, we explore a hybrid parity-time (PT) and anti-parity-time (APT) symmetric system supporting unitary scattering features with highly tunable Fano resonances. The PT-APT-symmetric system can be envisioned in nanophotonic and microwave circuit implementations, allowing for real-time control of the scattering lineshape and its underlying singularities. Our study shows the opportunities enabled by non-Hermitian platforms to control scattering lineshapes for a plethora of photonic, electronic, and quantum systems, with potential for high-resolution imaging, switching, sensing, and multiplexing.


2021 ◽  
Author(s):  
George D. Vendelin ◽  
Anthony M. Pavio ◽  
Ulrich L. Rohde ◽  
Matthias Rudolph

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 464
Author(s):  
Jun Tian ◽  
Congsi Wang ◽  
Shaoyi Liu ◽  
Song Xue ◽  
Le Zhang ◽  
...  

With the huge requirement of high frequency, multi-function and high reliability, the quality of microwave circuit interconnection has become an important factor that significantly affects the improvement of microwave electronic system performance. This paper has presented an identification method for flexible conductor wire interconnection (FCWI) electromechanical coupling parameters in microwave circuits with the consideration of their interaction effect. First, a parametric characterization cascade function has been proposed to design the FCWI, and consequently, a three-dimensional electromagnetic structure model of FCWI has been developed and verified. In order to identify the electromechanical coupling parameters of the flexible interconnection considering the interaction effect effectively, this paper has used the range multi-objective function to select the optimal level of the configuration parameter of the flexible interconnection that affects the signal transmission loss. Based on the variance analysis and range analysis of the experimental results, the comprehensive judgment criterion of electromechanical coupling parameters of flexible interconnection can be defined, and therefore, the calculation of electromechanical coupling degree can be derived and the electromechanical coupling property identification of flexible interconnection has been obtained. An example has been used afterwards to verify the accuracy of the proposed method. The method proposed in this paper can be a promising tool for microwave circuit comprehensive design and the optimization of its interconnection, considering both mechanical reliability and electrical performance.


Sign in / Sign up

Export Citation Format

Share Document