Stent Design for Compensating Wall Shear Stress via Computational Modeling and Fluid Dynamics

Author(s):  
Chun-Ming Chang ◽  
Wei Shin Wong ◽  
Jeffrey J. P. Tsai
2018 ◽  
Vol 4 (1) ◽  
pp. 93-96
Author(s):  
Carolin Wüstenhagen ◽  
Sylvia Pfensig ◽  
Stefan Siewert ◽  
Sebastian Kaule ◽  
Niels Grabow ◽  
...  

AbstractIn-stent thrombosis is a major complication of stent implantations. Unlike pathological occurrences as in-stent restenosis for instance, thrombosis represents an acute event associated with high mortality rates. Experiments show that low wall shear stress promotes undirected endothelial cell coverage of the vessel wall and therefore increases the risk of thrombus formation. Stent design represents a crucial factor influencing the surface areas of low wall shear stress and thus the incidence of acute in-stent thrombosis. In this study, we present an optimization method for stent designs with minimized thrombosis risk. A generic stent design was developed, based on five different stent design parameters. Optimization was conducted based on computational fluid dynamics analysis and the gradient-free Nelder-Mead approach. For each optimization step, a numerical fluid simulation was performed in a vessel with a reference vessel diameter of 2.70 mm with stent-overexpansion ratio of 1.0:1.1. For each numerical fluid simulation a physiological Reynolds number of 250, resulting in a mean velocity of 0.331 m/s at the inlet and a laminar flow as well as stiff vessel walls were assumed. The impact of different stent designs was analyzed based on the wall shear stress distribution. As a basis for the comparison of different stent designs, a dimensionless thrombosis risk number was calculated from the area of low wall shear stress and the overall stented area. The first two optimization steps already provide a decrease of thrombosis risk of approximately 83%. In conclusion, computational fluid dynamic analyses and optimization methods usind the Nelder-Mead approach represent a useful tool for the development of hemodynamically optimized stent designs with minimized thrombosis risk.


Vascular ◽  
2014 ◽  
Vol 23 (5) ◽  
pp. 474-482 ◽  
Author(s):  
S Demirel ◽  
D Chen ◽  
Y Mei ◽  
S Partovi ◽  
H von Tengg-Kobligk ◽  
...  

Purpose: To compare postoperative morphological and rheological conditions after eversion carotid endarterectomy versus conventional carotid endarterectomy using computational fluid dynamics. Basic methods: Hemodynamic metrics (velocity, wall shear stress, time-averaged wall shear stress and temporal gradient wall shear stress) in the carotid arteries were simulated in one patient after conventional carotid endarterectomy and one patient after eversion carotid endarterectomy by computational fluid dynamics analysis based on patient specific data. Principal findings: Systolic peak of the eversion carotid endarterectomy model showed a gradually decreased pressure along the stream path, the conventional carotid endarterectomy model revealed high pressure (about 180 Pa) at the carotid bulb. Regions of low wall shear stress in the conventional carotid endarterectomy model were much larger than that in the eversion carotid endarterectomy model and with lower time-averaged wall shear stress values (conventional carotid endarterectomy: 0.03–5.46 Pa vs. eversion carotid endarterectomy: 0.12–5.22 Pa). Conclusions: Computational fluid dynamics after conventional carotid endarterectomy and eversion carotid endarterectomy disclosed differences in hemodynamic patterns. Larger studies are necessary to assess whether these differences are consistent and might explain different rates of restenosis in both techniques.


2014 ◽  
Vol 14 (06) ◽  
pp. 1440006 ◽  
Author(s):  
XINKAI WANG ◽  
GUOJIE LI ◽  
BIN CHEN ◽  
YANSONG PU ◽  
PENG NIE ◽  
...  

Portal vein thrombosis (PVT) is an important complication that is associated with cirrhotic portal hypertension. The etiology is as yet unclear but could be closely related to the hemodynamics of the portal vein system. This paper investigated the hemodynamics in the portal vein model, both with and without thrombosis, as well as the effect of obstructions on the hemodynamics of the portal vein system using the computational fluid dynamics (CFD) method. PVT can probably develop in the inlets of the portal vein as well as the left/right branches of the portal vein because the distribution of wall shear stress satisfies the conditions for PVT formation based upon the simulation of the hemodynamics in the normal portal vein model. According to the above results, geometric models for a portal vein with a thrombus were constructed and the influence of different degrees (26%, 39%, 53% and 64%) of obstructions was studied. In the model with the maximum obstruction (64% blocked), the maximum velocity of portal vein (PV) increased up to twice than in the model without thrombosis, and the maximum wall shear stress of PV in the model with thrombosis (64% blocked) increased up to 9.4 Pa, whereas it was only 1.9 Pa in the model without thrombosis (nearly one fifth of the maximum wall shear stress). Excessive wall shear stress may cause mechanical damage to the blood vessels and induce physiological changes.


Author(s):  
Diego Gallo ◽  
Raffaele Ponzini ◽  
Filippo Consolo ◽  
Diana Massai ◽  
Luca Antiga ◽  
...  

The initiation and progression of vessel wall pathologies have been linked to disturbances of blood flow and altered wall shear stress. The development of computational techniques in fluid dynamics, together with the increasing performances of hardware and software allow to routinely solve problems on a virtual environment, helping to understand the role of biomechanics factors in the healthy and diseased cardiovascular system and to reveal the interplay of biology and local fluid dynamics nearly intractable in the past, opening to detailed investigation of parameters affecting disease progression. One of the major difficulties encountered when wishing to model accurately the cardiovascular system is that the flow dynamics of the blood in a specific vascular district is strictly related to the global systemic dynamics. The multiscale modelling approach for the description of blood flow into vessels consists in coupling a detailed model of the district of interest in the framework of a synthetic description of the surrounding areas of the vascular net [1]. In the present work, we aim at evaluating the effect of boundary conditions on wall shear stress (WSS) related vessel wall indexes and on bulk flow topology inside a carotid bifurcation. To do it, we coupled an image-based 3D model of carotid bifurcation (local computational domain), with a lumped parameters (0D) model (global domain) which allows for physiological mimicking of the haemodynamics at the boundaries of the 3D carotid bifurcation model here investigated. Two WSS based blood-vessel wall interaction descriptors, the Time Averaged WSS (TAWSS), and the Oscillating Shear Index (OSI) were considered. A specific Lagrangian-based “bulk” blood flow descriptor, the Helical Flow Index (HFI) [2], was calculated in order to get a “measure” of the helical structure in the blood flow. In a first analysis the effects of the coupled 0D models on the 3D model are evaluated. The results obtained from the multiscale simulation are compared with the results of simulations performed using the same 3D model, but imposing a flow rate at internal carotid (ICA) outlet section equal to the maximum (60%) and the minimum (50%) flow division obtained out from ICA in the multiscale model simulation (the presence of the coupled 0D model gives variable internal/external flow division ratio during the cardiac cycle), and a stress free condition on the external carotid (ECA).


2000 ◽  
Vol 123 (3) ◽  
pp. 284-292 ◽  
Author(s):  
Bogdan Ene-Iordache ◽  
Lidia Mosconi ◽  
Giuseppe Remuzzi ◽  
Andrea Remuzzi

Vascular accesses (VA) for hemodialysis are usually created by native arteriovenous fistulas (AVF) or synthetic grafts. Maintaining patency of VA continues to be a major problem for patients with end-stage renal disease, since in these vessels thrombosis and intimal hyperplasia often occur. These lesions are frequently associated with disturbed flow that develops near bifurcations or sharp curvatures. We explored the possibility of investigating blood flow dynamics in a patient-specific model of end-to-end native AVF using computational fluid dynamics (CFD). Using digital subtraction angiographies of an AVF, we generated a three-dimensional meshwork for numerical analysis of blood flow. As input condition, a time-dependent blood waveform in the radial artery was derived from centerline velocity obtained during echo-color-Doppler ultrasound examination. The finite element solution was calculated using a fluid-dynamic software package. In the straight, afferent side of the radial artery wall shear stress ranged between 20 and 36 dynes/cm2, while on the inner surface of the bending zone it increased up to 350 dynes/cm2. On the venous side, proximal to the anastomosis, wall shear stress was oscillating between negative and positive values (from −12 dynes/cm2 to 112 dynes/cm2), while distal from the anastomosis, the wall shear stress returned within the physiologic range, ranging from 8 to 22 dynes/cm2. Areas of the vessel wall with very high shear stress gradient were identified on the bending zone of the radial artery and on the venous side, after the arteriovenous shunt. Secondary blood flows were also observed in these regions. CFD gave a detailed description of blood flow field and showed that this approach can be used for patient-specific analysis of blood vessels, to understand better the role of local hemodynamic conditions in the development of vascular lesions.


Sign in / Sign up

Export Citation Format

Share Document