Convolutional Neural Networks for Cellular Drug Response Prediction Using Immunofluorescence Images of Intracellular Actin Filament Networks

Author(s):  
Ronald Wihal Oei ◽  
Jiewen Zhang ◽  
Jin Zhong ◽  
Guanqun Hou ◽  
Nuntawat Chanajarunvit ◽  
...  
2019 ◽  
Vol 35 (14) ◽  
pp. i501-i509 ◽  
Author(s):  
Hossein Sharifi-Noghabi ◽  
Olga Zolotareva ◽  
Colin C Collins ◽  
Martin Ester

Abstract Motivation Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance. Results We propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI’s performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI’s high predictive power suggests it may have utility in precision oncology. Availability and implementation https://github.com/hosseinshn/MOLI. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Hossein Sharifi-Noghabi ◽  
Olga Zolotareva ◽  
Colin C. Collins ◽  
Martin Ester

AbstractMotivationHistorically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance.ResultsWe propose MOLI, a Multi-Omics Late Integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration, and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding subnetworks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI’s performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI’s high predictive power suggests it may have utility in precision oncology.Availability of the implemented codeshttps://github.com/hosseinshn/[email protected] and [email protected]


2021 ◽  
Author(s):  
Tuan Thanh Nguyen ◽  
Thang Chu

Previous models have shown that learning drug features from their graph representation is more efficient than learning from their strings or numeric representations. Furthermore, integrating multi-omics data of cell lines increases the performance of drug response prediction. However, these models showed drawbacks in extracting drug features from graph representation and incorporating redundancy information from multi-omics data. This paper proposes a deep learning model, GraTransDRP, to better drug representation and reduce information redundancy. First, the Graph transformer was utilized to extract the drug representation more efficiently. Next, Convolutional neural networks were used to learn the mutation, meth, and transcriptomics features. However, the dimension of transcriptomics features is up to 17737. Therefore, KernelPCA was applied to transcriptomics features to reduce the dimension and transform them into a dense presentation before putting them through the CNN model. Finally, drug and omics features were combined to predict a response value by a fully connected network. Experimental results show that our model outperforms some state-of-the-art methods, including GraphDRP, GraOmicDRP.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Sign in / Sign up

Export Citation Format

Share Document