Discrete Sliding Mode Controlled Cuk Converter for PV fed Highly Transient Loads

Author(s):  
Viji K ◽  
K Chitra ◽  
Buvana D
2020 ◽  
Vol 42 ◽  
pp. 100807
Author(s):  
Carlos Andrés Ramos-Paja ◽  
Daniel Gonzalez Montoya ◽  
Juan David Bastidas-Rodríguez

Author(s):  
Carlos Andrés Ramos-Paja ◽  
Daniel Gonzalez-Motoya ◽  
Juan Pablo Villegas-Seballos ◽  
Sergio Ignacio Serna-Garces ◽  
Roberto Giral

The wide range of step-up and step-down input-output voltage characteristic of the Cuk converter makes it a good candidate to interface photovoltaic arrays in both classical and distributed maximum power point tracking systems. Because its two inductor structure, Cuk converters have continuous input and output currents, which reduce the additional filtering elements usually required for interfacing dc/dc converter topologies. However, PV systems based on Cuk converters usually do not provide formal proofs of global stability under realistic conditions, which makes impossible to ensure a safe operation of the PV installation. Therefore, this paper proposes a high performance sliding-mode controller for PV systems based on Cuk converters, which regulates the PV voltage in agreement with the commands imposed by a MPPT algorithm, rejecting both load and environmental perturbations, and ensuring global stability for real operation conditions. Finally, the performance of the regulated PV system is tested using both simulations and experiments.


Author(s):  
Syed Mujtaba Mahdi Mudassir ◽  
Faheem Ahmed Khan ◽  
Shaziya Sultana

A control system is a set of mechanical or electronic devices that regulates other devices or systems by way of control loops. Typically, control systems are computerized. The mode of operation in a Control System where controlling variables is a function of the system and the structure is changed knowingly according to set of rules, which are already declared: for example a sensor based  system, is called as sliding control mode where the feedback control system response is limited and revolves around surface in the space to a point of equilibrium. In this mode of schemes, a switching variable dictates which form of control is to be used at a given instant, depending on the position of the state from the surface. First a set of points for which the switching function is null is used called as sliding surface. Sliding Mode Control (SMC) is a very robust technique which can handle sudden and large changes in dynamics of the system which can be applied to many areas like controlling of motor, aircraft and spacecraft, process control and power systems. SMC is one of the best tool in the industry to design controllers for the systems which has variable values, and provides robust properties against matched uncertainties, However,this use of SMC can only be achieved after the occurrence of the sliding mode. Before the occurrence of the switching function as null i.e. during the reaching phase, the system is affected by even matched ones. Several first order SMC applications for linear and nonlinear systems can be found in the literature [1]. Hence to eliminate the reaching phase and to make sure the ruggedness of the system throughout the entire closed-loop system response Integral Sliding Modes are used. In this paper a design procedure for sliding mode controllers for better control of voltage is applied, and then the ideas implemented are extended to all integral sliding modes in order to ensure optimum operation of entire system response[2]. Necessary conditions for the existence of sliding modes are also given. The closed-loop system is also proved to be exponentially stable. Simulation and experimental tests using the prototype of controlled DC-DC  CUK converter were performed to validate the proposed control approach.


Sign in / Sign up

Export Citation Format

Share Document