Torque Ripple Minimization in Brushless DC Motor with Optimal Current Vector Control Technique

Author(s):  
Xuliang Yao ◽  
Guangxu Lu ◽  
Jicheng Zhao ◽  
Hao Lin
Author(s):  
P. Rajesh ◽  
Francis H. Shajin ◽  
G. Kodeeswara Kumaran

This manuscript proposes an improved DC-DC converter framework using hybrid control algorithm for minimizing brushless DC motor (BLDC) torque ripple (TR). At first, the modeling of the brushless DC motor is intended by an enhanced Cuk converter (ECC). The function and performance of the Cuk converter are updated using application of switched inductor. In this way, the control system integrates two control loops such as speed and torque control loop, which is employed for improving BLDC performance. Therefore, the Invasive Weed Optimization (IWO) and Local Random Search (LRS) are proposed to enhance control loop operations. In the IWO algorithm, the LRS approach is used as part of the dispersion process to build up the course of action to find precision. This manuscript explores the IWO-LRS algorithm for limiting BLDC motor speed and torque error. Nevertheless, the exit from the proposed approach is subject to the speed and torque controller input. The better optimal gain parameters have been worked out for the update of the controller operation through the aid of necessary goal functions. The proposed controller topology is activated in MATLAB/Simulink site and the performance is evaluated using other existing methods, like Particle Swarm Optimization (PSO), Bacterial Foraging (BF) algorithm.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3989-3993

This research Paper proposes the Brushless DC motors control (BLDC) could accomplish higher execution looking into effectiveness in examination for old brushed DC motor controlling which is difficult to control because it requires a phase for switching circuit. This work proposes a fuzzy logic control for brushless DC motor for axis based on Hall Effect by applying sensor control system and also it produces brushless motor for rearranging the three phase conduction mode model. At long last this paper may be with create efficient control methodologies on enhance driving dynamics on the mechanical dynamic consider of propulsion method. The recommended control method stabilizes those controls services (speeds) done by controller of brushless DC motor drive (BLDC). On behalf of settling 2 wheels also physical favorable circumstances of BLDC motors are associated straight forwardly of the tires by improving the rotor speed. The parameters such as power factor, rotor speed, torque ripple, EMF is compensated & simulation results are tabulated.


Sign in / Sign up

Export Citation Format

Share Document