scholarly journals Execution of BLDC Motor using Fuzzy Logic Controller on Propulsion Application for Hybrid Vehicle System

2019 ◽  
Vol 8 (2S11) ◽  
pp. 3989-3993

This research Paper proposes the Brushless DC motors control (BLDC) could accomplish higher execution looking into effectiveness in examination for old brushed DC motor controlling which is difficult to control because it requires a phase for switching circuit. This work proposes a fuzzy logic control for brushless DC motor for axis based on Hall Effect by applying sensor control system and also it produces brushless motor for rearranging the three phase conduction mode model. At long last this paper may be with create efficient control methodologies on enhance driving dynamics on the mechanical dynamic consider of propulsion method. The recommended control method stabilizes those controls services (speeds) done by controller of brushless DC motor drive (BLDC). On behalf of settling 2 wheels also physical favorable circumstances of BLDC motors are associated straight forwardly of the tires by improving the rotor speed. The parameters such as power factor, rotor speed, torque ripple, EMF is compensated & simulation results are tabulated.

Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 288 ◽  
Author(s):  
Kuditi Kamalapathi ◽  
Neeraj Priyadarshi ◽  
Sanjeevikumar Padmanaban ◽  
Jens Holm-Nielsen ◽  
Farooque Azam ◽  
...  

This research work deals with a hybrid control system based integrated Cuk converter fed brushless DC motor (BLDCM) for power factor correction. In this work, moth-flame optimization (MFO) and a fuzzy logic controller (FLC) have been combined and a moth-flame fuzzy logic controller (MFOFLC) has been proposed. Firstly, the BLDC motor modeling is composed with the power factor correction (PFC) based integrated Cuk converter and BLDC speed is regulated using variable DC-Link inverter voltage which results in a low switching operation with fewer switched losses. Here, with the use of a switched inductor, the task and execution of the proposed converter is redesigned. The DBR (diode bridge rectifier) trailed by a proposed PFC based integrated Cuk converter operates in discontinuous inductor conduction mode (DICM) for achievement of better power factor. MFO is exhibited for gathering of a dataset from the input voltage signal. At that point, separated datasets are sent to the FLC to improve the updating function and minimization of torque ripple. However, our main objective is to assess adequacy of the proposed method, but the power factor broke down. The execution of the proposed control methodology is executed in the MATLAB/Simulink working platform and the display is assessed with the existing techniques.


Author(s):  
K. Kamalapathi ◽  
Neeraj Priyadarshi ◽  
Sanjeevikumar Padmanaban ◽  
Farooque Azam ◽  
C. Umayal ◽  
...  

This research work deals hybrid control system based integrated Cuk converter fed brushless DC motor (BLDCM) for power factor correction. In this work, moth-flame optimization (MFO) and fuzzy logic controller (FLC) has been combined and moth –flame fuzzy logic controller (MFOFLC) has been proposed. Firstly, the BLDC motor modelling is composed with power factor correction (PFC) based integrated Cuk converter and BLDC speed is regulated using variable DC-Link inverter voltage which makes low switching operation with less switched losses. Here, with the use of switched inductor, the task and execution of proposed converter is redesigned. The DBR (diode bridge rectifier) trailed by proposed PFC based integrated Cuk converter operates in discontinuous inductor conduction mode(DICM) for achievement of better power factor.MFO is exhibited for gathering of dataset from the input voltage signal. At that point separated datasets is send to FLC to improve the updating function and minimization of torque ripple. However, our main objective is to assess adequacy of proposed method, the power factor is broke down. The execution of the proposed control methodology is executed in MATLAB/Simulink working platform and the display is assessed with the existing techniques.


2013 ◽  
Vol 373-375 ◽  
pp. 1363-1368
Author(s):  
Jian Zhang ◽  
Yuan Jun Zhou ◽  
Jing Zhao

Brushless DC motors, which are applied to the human skeleton boosters, require frequent switch of four-quadrant operation states of forward rotation, backward rotation, electro motion and braking control. This switch generally requires to be soft and smooth without overshoot, big impulse or speed mutation. The general performance of the brushless DC motor control system cant meet this requirement. The main purpose of this paper is to solve this problem by adopting bipolar PWM control which makes it possible to realize the motor operating in four-quadrant and improve its characteristics. In addition, the paper proved the correct and efficiency of this method by using simulation .


Author(s):  
Sanatan Kumar ◽  
Debanjan Roy ◽  
Madhu Singh

<span>This paper presents a PFC (Power Factor Correction) Cuk converter fed BLDC (Brushless DC) motor drive and the speed of BLDC motor is controlled using fuzzy logic implementation. The PFC converters are employed to enhance the power quality. The Brushless DC motor speed is under the control of DC-bus voltage of VSI-Voltage Source Inverter in which switching of low frequency is used. This helps in the electronic commutation of BLDC motors thus decreasing the switching losses in VSI. A DBR (Diode Bridge Rectifier) next to the PFC Cuk converter controls the voltage at DC link maintaining unity power factor. The characteristics of Cuk converter in four dissimilar modes of operation are studied such as continuous and discontinuous conduction modes (CCM and DCM) respectively. The entire system is simulated using Matlab/Simulink software and the simulation results are reported to verify the performance investigation of the proposed system.</span>


Sign in / Sign up

Export Citation Format

Share Document