Unscented Kalman Filter Target Tracking Based on Elman Neural Network

Author(s):  
Qian FuCai ◽  
Liu SiYu ◽  
Xie Guo ◽  
Liu YuShuang
Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1596 ◽  
Author(s):  
Huajun Liu ◽  
Liwei Xia ◽  
Cailing Wang

Tracking maneuvering targets is a challenging problem for sensors because of the unpredictability of the target’s motion. Unlike classical statistical modeling of target maneuvers, a simultaneous optimization and feedback learning algorithm for maneuvering target tracking based on the Elman neural network (ENN) is proposed in this paper. In the feedback strategy, a scale factor is learnt to adaptively tune the dynamic model’s error covariance matrix, and in the optimization strategy, a corrected component of the state vector is learnt to refine the final state estimation. These two strategies are integrated in an ENN-based unscented Kalman filter (UKF) model called ELM-UKF. This filter can be trained online by the filter residual, innovation and gain matrix of the UKF to simultaneously achieve maneuver feedback and an optimized estimation. Monte Carlo experiments on synthesized radar data showed that our algorithm had better performance on filtering precision compared with most maneuvering target tracking algorithms.


2020 ◽  
Author(s):  
Peng Gu ◽  
Zhongliang Jing ◽  
Liangbin Wu

AbstractOne purpose of target tracking is to estimate the states of targets, and unscented Kalman filter is one of the effective algorithms for estimating in the nonlinear tracking problem. Considering the characteristics of complex maneuverability, it is easy to reduce the tracking accuracy and cause divergence due to the mismatch between the system model and the practical target motion model. Adaptive fading factor is an effective counter to this problem, having been instrumental in solving accuracy and divergence problems. Fading factor can adaptively adjust covariance matrix online to compensate model mismatch error. Moreover, fading factor not only improves the filtering accuracy, but also automatically adjusts the error covariance in response to the different situation. The simulation results show that the adaptive fading factor unscented Kalman filter has more advantages in target tracking and it can be better applied to nonlinear target tracking.


Sign in / Sign up

Export Citation Format

Share Document