Precise Fault Isolation Method of INS/GPS/ADS Integrated Navigation System

Author(s):  
Zhenwei Li ◽  
Yongmei Cheng ◽  
Xiaodan Cui
2018 ◽  
Vol 72 (1) ◽  
pp. 101-120 ◽  
Author(s):  
Jianxin Xu ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Rong Wang

The accuracy and fault tolerance of filters are directly affected by the filter architecture and algorithm, thus influencing navigation performance. The chi square detection used in the conventional reset federated filter is not sensitive to soft faults, and it is easy to cause the health subsystem to be polluted through information sharing. It is a challenge to design an adaptive reset federated filter to improve the performance of the navigation system. Therefore, taking the Strapdown Inertial Navigation System/Global Positioning System/Celestial Navigation System/Synthetic Aperture Radar (SINS/GPS/CNS/SAR) integrated navigation system as an example, an adaptive federated filter architecture for vector-formed information sharing without a fault isolation module is designed in this paper. The proposed method uses the two-state chi square detection algorithm to calculate the parameters corresponding to each state, making the state with higher accuracy obtain a greater information distribution coefficient. In addition, according to the value of vector-formed information sharing, an adaptive coefficient of measurement noise is designed. This improves the adaptability of the navigation system to soft faults. Simulation results show that the accuracy of the proposed algorithm has the same performance compared with the conventional method under normal circumstances. When the sensor has a soft fault, the adaptive federated filter algorithm proposed in this paper can adaptively adjust the distribution coefficients, eliminate the influence of the fault information and improve the precision of the navigation system. The approach described in this paper can be used in multi-sensor integrated navigation. It will have better performance in engineering applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huisheng Liu ◽  
Zengcai Wang ◽  
Susu Fang ◽  
Chao Li

A constrained low-cost SINS/OD filter aided with magnetometer is proposed in this paper. The filter is designed to provide a land vehicle navigation solution by fusing the measurements of the microelectromechanical systems based inertial measurement unit (MEMS IMU), the magnetometer (MAG), and the velocity measurement from odometer (OD). First, accelerometer and magnetometer integrated algorithm is studied to stabilize the attitude angle. Next, a SINS/OD/MAG integrated navigation system is designed and simulated, using an adaptive Kalman filter (AKF). It is shown that the accuracy of the integrated navigation system will be implemented to some extent. The field-test shows that the azimuth misalignment angle will diminish to less than 1°. Finally, an outliers detection algorithm is studied to estimate the velocity measurement bias of the odometer. The experimental results show the enhancement in restraining observation outliers that improves the precision of the integrated navigation system.


2013 ◽  
Vol 341-342 ◽  
pp. 896-900
Author(s):  
Bao Jiang Sun ◽  
Yue Xu

Describes briefly ultrasonic positioning system (UPS) and digital magnetic compass (DMC) heading measurement principle,analyzed the advantages and disadvantages of each option. To improve the accuracy of the heading measurement, As the theoretical basis of adaptive Kalman filter, designed a kind of ups and dmc integrated navigation system. Based on both real measurement data, made a simulation experiment and confirmed the feasibility of the navigation system.


Sign in / Sign up

Export Citation Format

Share Document