A Double Closed-loop Integral Sliding Mode Controller for Position and Attitude Tracking of Underwater Vehicle

Author(s):  
Wei Tao ◽  
Xiaoshuang Zhang
2020 ◽  
Vol 17 (4) ◽  
pp. 172988142094177
Author(s):  
Yanhui Wei ◽  
Zhi Zheng ◽  
Qiangqiang Li ◽  
Zhilong Jiang ◽  
Pengfei Yang

A nonlinear robust control method for the trajectory tracking of the underwater vehicle and manipulator system that operates in the presence of external current disturbances is proposed using double closed-loop integral sliding mode control. The designed controller uses a double closed-loop control structure to track the desired trajectory in the joint space of the underwater vehicle and manipulator system, and its inner and outer loop systems use integral sliding surface to enhance the robustness of the whole system. Then, the continuous switching mode based on hyperbolic tangent function is used instead of the traditional discontinuous switching mode to reduce the chattering of the control input of the underwater vehicle and manipulator system. In addition, the control method proposed in this article does not need to estimate the uncertainties of the underwater vehicle and manipulator system control system through online identification, but also can ensure the robustness of the underwater vehicle and manipulator system motion control in underwater environment. Therefore, it is easier to be implemented on the embedded platform of the underwater vehicle and manipulator system and applied to the actual marine operation tasks. At last, the stability of the control system is proved by the Lyapunov theory, and its effectiveness and feasibility are verified by the simulation experiments in MATLAB software.


Author(s):  
Ishan Chawla ◽  
Vikram Chopra ◽  
Ashish Singla

AbstractFrom the last few decades, inverted pendulums have become a benchmark problem in dynamics and control theory. Due to their inherit nature of nonlinearity, instability and underactuation, these are widely used to verify and implement emerging control techniques. Moreover, the dynamics of inverted pendulum systems resemble many real-world systems such as segways, humanoid robots etc. In the literature, a wide range of controllers had been tested on this problem, out of which, the most robust being the sliding mode controller while the most optimal being the linear quadratic regulator (LQR) controller. The former has a problem of non-robust reachability phase while the later lacks the property of robustness. To address these issues in both the controllers, this paper presents the novel implementation of integral sliding mode controller (ISMC) for stabilization of a spatial inverted pendulum (SIP), also known as an x-y-z inverted pendulum. The structure has three control inputs and five controlled outputs. Mathematical modeling of the system is done using Euler Lagrange approach. ISMC has an advantage of eliminating non-robust reachability phase along with enhancing the robustness of the nominal controller (LQR Controller). To validate the robustness of ISMC to matched uncertainties, an input disturbance is added to the nonlinear model of the system. Simulation results on two different case studies demonstrate that the proposed controller is more robust as compared to conventional LQR controller. Furthermore, the problem of chattering in the controller is dealt by smoothening the controller inputs to the system with insignificant loss in robustness.


Sign in / Sign up

Export Citation Format

Share Document